FLASH MEMORY

CMOS

4M (512K × 8) BIT

MBM29F040A-90-X/-12-X

■ FEATURES

· Single 5.0 V read, write, and erase

Minimizes system level power requirements

· Compatible with JEDEC-standard commands

Uses same software commands as E²PROMs

· Compatible with JEDEC-standard byte-wide pinouts

32-pin PLCC (Package suffix: PD)

32-pin TSOP (Package suffix: PFTN - Normal Bend Type, PFTR - Reversed Bend Type)

- Minimum 100,000 write/erase cycles
- High performance

90 ns maximum access time

Sector erase architecture

8 equal size sectors of 64 K bytes each

Any combination of sectors can be concurrently erased. Also supports full chip erase.

Embedded Erase[™] Algorithms

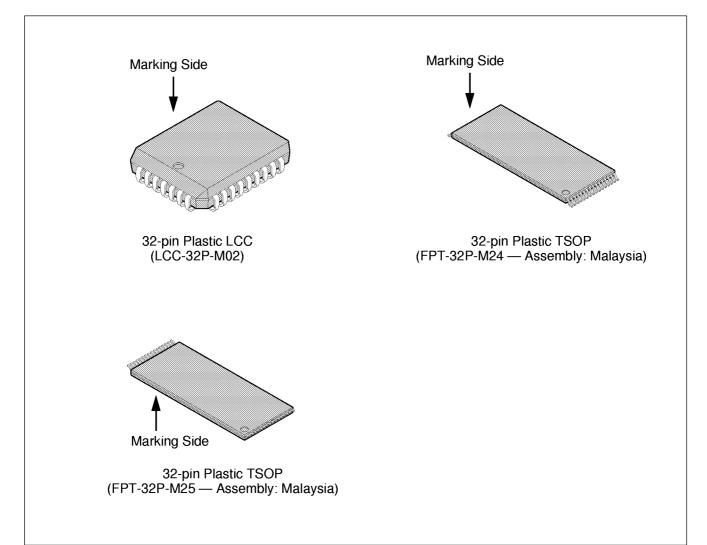
Automatically pre-programs and erases the chip or any sector

Embedded Program™ Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Low Vcc write inhibit ≤3.2 V
- Sector protection

Hardware method disables any combination of sectors from write or erase operations


Erase Suspend/Resume

Suspends the erase operation to allow a read data in another sector within the same device

Extended operating temperature range: –40°C to +85°C

Please refer to "MBM29F040A-70/-90/-12" in detailed specifications.

■ PACKAGE

■ GENERAL DESCRIPTION

The MBM29F040A-X is a 4 M-bit, 5.0 V-only Flash memory organized as 512 K bytes of 8 bits each. The MBM29F040A-X is offered in a 32-pin PLCC and 32-pin TSOP packages. This device is designed to be programmed in-system with the standard system 5.0 V Vcc supply. A 12.0 V VPP is not required for write or erase operations. The device can also be reprogrammed in standard EPROM programmers.

The industrial MBM29F040A-X offers access times of 90 ns and 120 ns, allowing operation of high-speed microprocessors without wait states. To eliminate bus contention the device has separate chip enable (\overline{CE}) , write enable (\overline{WE}) , and output enable (\overline{OE}) controls.

The MBM29F040A-X is pin and command set compatible with JEDEC standard 4 M-bit E²PROMs. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from 12.0 V Flash or EPROM devices.

The MBM29F040A-X is programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Typically, each sector can be programmed and verified in less than 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margin.

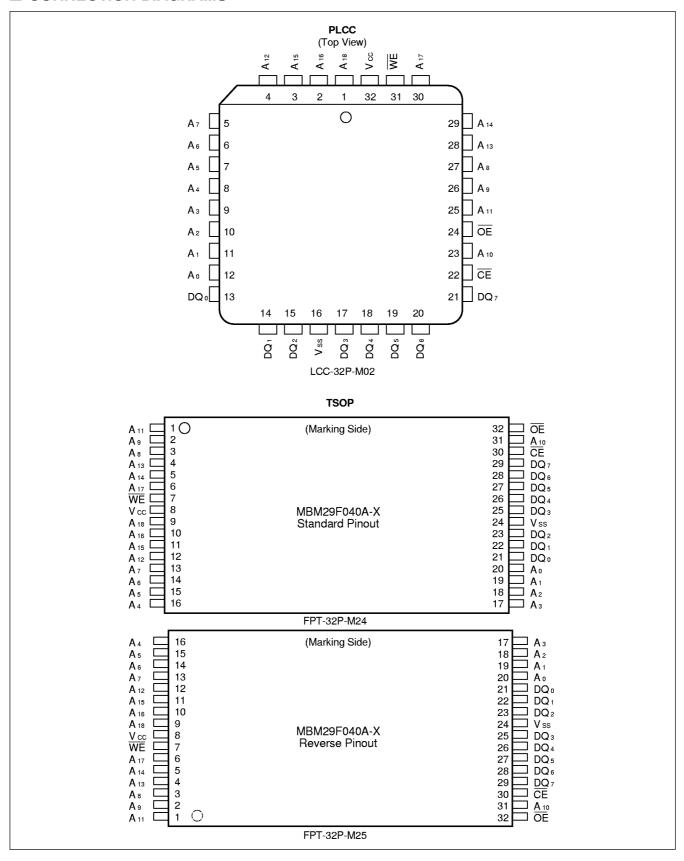
A sector is typically erased and verified in 1.0 second (if already completely preprogrammed).

This device also features a sector erase architecture. The sector mode allows for 64 K byte sectors of memory to be erased and reprogrammed without affecting other sectors. The MBM29F040A-X is erased when shipped from the factory.

The device features single 5.0 V power supply operation for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. A low V_{CC} detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by \overline{Data} Polling of DQ_7 or by the Toggle Bit feature on DQ_6 . Once the end of a program or erase cycle has been completed, the device internally resets to the read mode.

Fujitsu's Flash technology combines years of EPROM and E²PROM experience to produce the highest levels of quality, reliability and cost effectiveness. The MBM29F040A-X memory electrically erases the entire chip or all bits within a sector simultaneously via Fowler-Nordhiem tunneling. The bytes are programmed one byte at a time using the EPROM programming mechanism of hot electron injection.

FLEXIBLE SECTOR-ERASE ARCHITECTURE


- · 64 K byte per sector
- Individual-sector, multiple-sector, or bulk-erase capability
- Individual or multiple-sector protection is user definable

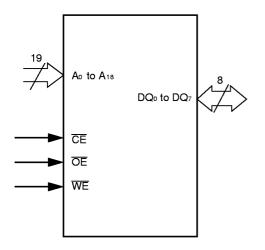
	7FFFFH
	6FFFFH
04141	5FFFFH
64 K byte per sector	4FFFFH
	3FFFFH
	2FFFFH
	1FFFFH
	0FFFFH
	I _{00000Н}

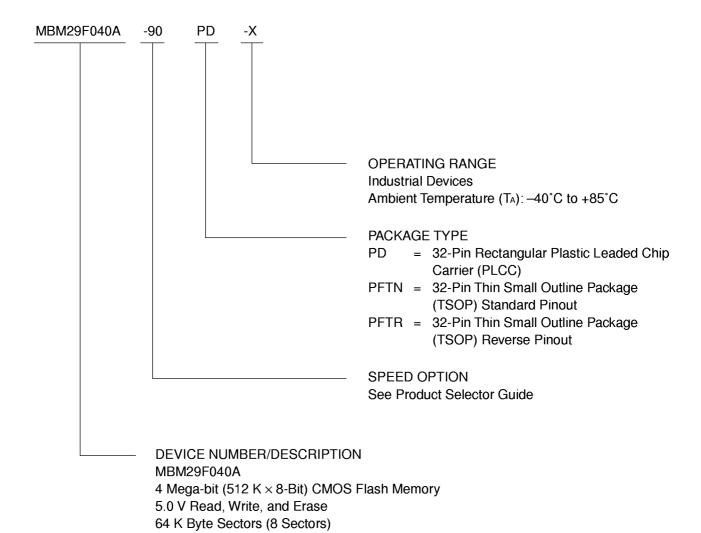
■ PRODUCT SELECTOR GUIDE

Part No.	MBM29F040A		
Ordering Part No.	-90-X	-12-X	
Max. Address Access Time (ns)	90	120	
Max. CE Access Time (ns)	90	120	
Max. OE Access Time (ns)	35	50	

■ CONNECTION DIAGRAMS

■ LOGIC SYMBOL




Table 1 MBM29F040A Pin Configuration

Pin	Function		
Ao to A ₁₈	Address Inputs		
DQo to DQ7 Data Inputs/Outputs			
CE	Chip Enable		
ŌĒ	Output Enable		
WE	Write Enable		
Vss	Device Ground		
Vcc	Device Power Supply (5.0 V ±10%)		

■ ORDERING INFORMATION

Industrial Devices

Fujitsu industrial devices are available in several packages. The order number is formed by a combination of:

■ ABSOLUTE MAXIMUM RATINGS

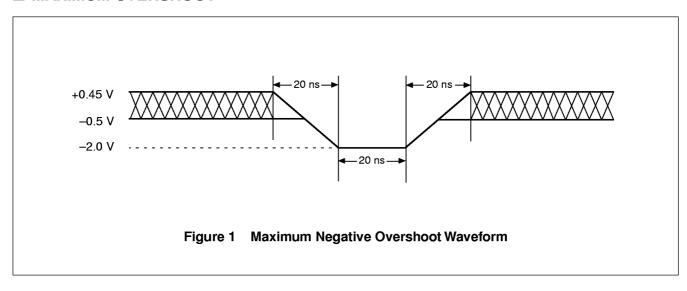
Storage Temperature	–55°C to +125°C
Ambient Temperature with Power Applied	40°C to +85°C
Voltage with Respect to Ground All pins except A ₉ , \overline{OE} (Note 1)	–2.0 V to +7.0 V
Vcc (Note 1)	–2.0 V to +7.0 V
A ₉ , OE (Note 2)	–2.0 V to +13.5 V

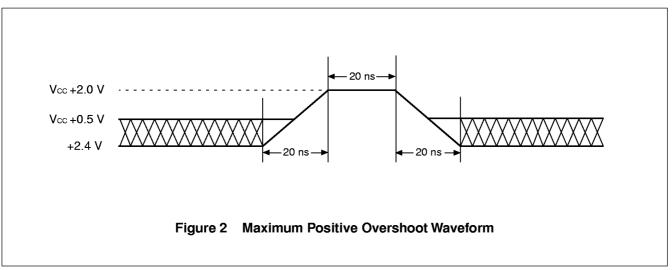
- Notes: 1. Minimum DC voltage on input or I/O pins are -0.5 V. During voltage transitions, inputs may negative overshoot Vss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on output and I/O pins is Vcc +0.5 V. During voltage transitions, outputs may positive overshoot to Vcc +2.0 V for periods of up to 20 ns.
 - 2. Minimum DC input voltage on A_9 , \overline{OE} pins are -0.5 V. During voltage transitions, A_9 , and \overline{OE} pins may negative overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC input voltage on A_9 , and \overline{OE} are +13.5 V which may overshoot to 14.0 V for periods of up to 20 ns.

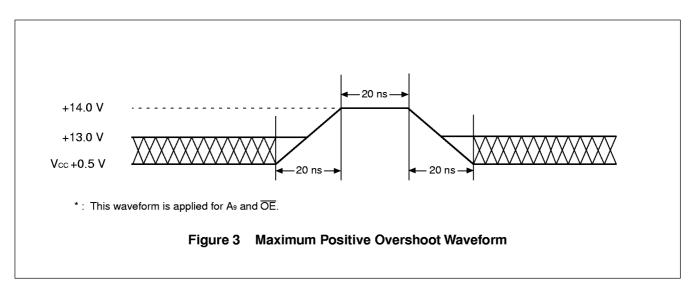
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING RANGES

Industrial Devices
Ambient Temperature (T_A) —40°C to +85°C
Vcc Supply Voltages — +4.50 V to +5.50 V


Operating ranges define those limits between which the functionality of the device is guaranteed.


WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.


Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ MAXIMUM OVERSHOOT

■ DC CHARACTERISTICS

TTL/NMOS Compatible

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
I LI	Input Leakage Current	V _{IN} = V _{SS} to V _{CC} , V _{CC} = V _{CC} Max.	_	±1.0	μΑ
Ісо	Output Leakage Current	Vout = Vss to Vcc, Vcc = Vcc Max.	_	±1.0	μΑ
Ішт	A ₉ , OE Inputs Leakage Current	Vcc = Vcc Max. A ₉ , OE = 12.0 V	_	50	μΑ
Icc1	Vcc Active Current (Note 1)	$\overline{CE} = V_{IL}, \overline{OE} = V_{IH}$	_	50	mA
Icc2	Vcc Active Current (Note 2)	$\overline{CE} = V_{IL}, \overline{OE} = V_{IH}$	_	80	mA
Іссз	Vcc Standby Current	Vcc = Vcc Max., CE = V _{IH}	_	1.5	mA
V⊩	Input Low Level	_	-0.5	0.45	٧
VIH	Input High Level	_	2.4	Vcc +0.5	٧
VID	Voltage for Autoselect and Sector Protection (A ₉ , OE)	Vcc = 5.0 V	11.5	12.5	V
Vol	Output Low Voltage Level	IoL = 12 mA, Vcc = Vcc Min.	_	0.45	٧
Vон	Output High Voltage Level	lон = −2.5 mA, Vcc = Vcc Min.	2.4	_	٧
V LKO	Low Vcc Lock-Out Voltage	_	3.2	4.2	٧

Notes: 1. The loc current listed includes both the DC operating current and the frequency dependent component (at 6 MHz).

The frequency component typically is 2 mA/MHz, with \overline{OE} at V_{IH}.

^{2.} lcc active while Embedded Algorithm (program or erase) is in progress.

CMOS Compatible

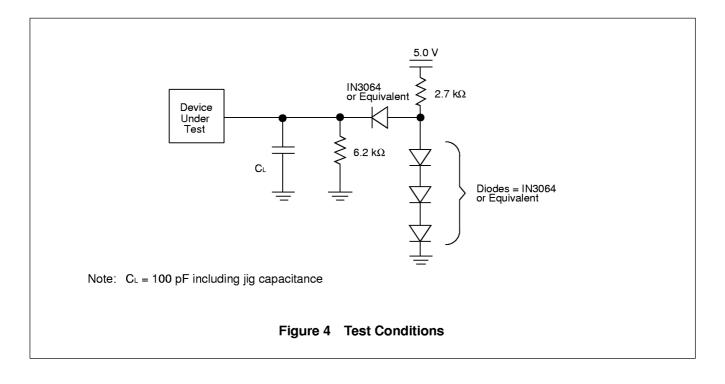
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
lu	Input Leakage Current	V _{IN} = V _{SS} to V _{CC} , V _{CC} = V _{CC} Max.	_	±1.0	μА
Ісо	Output Leakage Current	Vout = Vss to Vcc, Vcc = Vcc Max.	_	±1.0	μА
Ішт	A ₉ , OE Inputs Leakage Current	$V_{CC} = V_{CC} Max.$ A ₉ , $\overline{OE} = 12.0 V$		50	μА
Icc1	Vcc Active Current (Note 1)	CE = V _I , OE = V _I	_	50	mA
Icc2	Vcc Active Current (Note 2)	CE = VIL, OE = VIH	_	80	mA
Іссз	Vcc Standby Current	$Vcc = Vcc Max., \overline{CE} = Vcc \pm 0.3 V$	_	100	μΑ
V⊩	Input Low Level	_	-0.5	0.45	٧
VIH	Input High Level	_	0.7×Vcc	Vcc+0.3	٧
VID	Voltage for Autoselect and Sector Protection (A ₉ , OE)	Vcc = 5.0 V	11.5	12.5	٧
Vol	Output Low Voltage Level	loL = 12.0 mA, Vcc = Vcc Min.	_	0.45	٧
V он1	Output High Valtage Level	lон = −2.5 mA, Vcc = Vcc Min.	0.85×Vcc	_	V
V _{OH2}	Output High Voltage Level	$loh = -100 \mu A$, $Vcc = Vcc Min$.	Vcc-0.4	_	٧
V LKO	Low Vcc Lock-Out Voltage	_	3.2	4.2	٧

Notes: 1. The loc current listed includes both the DC operating current and the frequency dependent component (at 6 MHz).

The frequency component typically is 2 mA/MHz, with \overline{OE} at V_{IH}.

^{2.} lcc active while Embedded Algorithm (program or erase) is in progress.

■ AC CHARACTERISTICS


Read Only Operations Characteristics

Parameter Symbols		Description	Test Set Up		-90-X	-12-X (Note)	Unit
JEDEC	Standard	•	•		(Note) (N		
tavav	t RC	Read Cycle Time	_	Min.	90	120	ns
tavqv	tacc	Address to Output Delay	CE = VIL OE = VIL	Мах.	90	120	ns
t ELQV	t ce	Chip Enable to Output Delay	ŌĒ = V⊩	Мах.	90	120	ns
t GLQV	t oe	Output Enable to Output Delay	_	Мах.	35	50	ns
t ehaz	t DF	Chip Enable to Output High-Z	_	Max.	20	30	ns
tвнаz	t DF	Output Enable to Output High-Z	_	Max.	20	30	ns
taxqx	t он	Output Hold Time From Addresses, CE or OE, Whichever Occurs First	_	Min.	0	0	ns

Note: Test Conditions: Output Load: 1 TTL gate and 100 pF Input rise and fall times: 20 ns

Input rise and fall times: 20 ns Input pulse levels: 0.0 V to 3.0 V Timing measurement reference level

Input: 0.45 V and 2.4 V Output: 0.8 V and 2.0 V

• Write/Erase/Program Operations Alternate WE Controlled Writes

Parameter Symbols						40.14	
JEDEC	Standard		Description		-90-X	-12-X	Unit
tavav	twc	Write Cycle Time M			90	120	ns
t avwl	t as	Address Set Up	Time	Min.	0	0	ns
twLax	tан	Address Hold Ti	me	Min.	45	50	ns
t dvwh	tos	Data Set Up Tim	е	Min.	45	50	ns
twhdx	t DH	Data Hold Time		Min.	0	0	ns
_	toes	Output Enable S	et Up Time	Min.	0	0	ns
	tosu	Output Enable	Read	Min.	0	0	ns
	t oeh	Hold Time	Toggle and Data Polling	Min.	10	10	ns
t GHWL	t gH w L	Read Recover T	Read Recover Time Before Write		0	0	ns
telwl	t cs	CE Set Up Time		Min.	0	0	ns
twheh	tсн	CE Hold Time		Min.	0	0	ns
twLwH	t wp	Write Pulse Widt	Write Pulse Width		45	50	ns
tw⊦w∟	twpн	Write Pulse Widt	h High	Min.	20	20	ns
twHwH1	twhwh1	Byte Programmi	ng Operation	Тур.	16	16	μs
twhwh2	twhwh2	Sector Erase Op	peration (Note 1)	Тур.	1.5	1.5	sec
LVVIIVVIIZ	CVVI 1VVI 12	Coolor Erace op		Max.	30	30	sec
	tvcs	Vcc Set Up Time	Vcc Set Up Time		50	50	μs
_	t vlht	Voltage Transition Time (Note 2)		Min.	4	4	μs
	twpp	Write Pulse Width (Note 2)		Min.	100	100	μs
_	toesp	OE Set Up Time	to WE Active (Note 2)	Min.	4	4	μs
_	t csp	CE Set Up Time	to WE Active (Note 2)	Min.	4	4	μs

Notes: 1. This does not include the preprogramming time. 2. This timing is for Sector Protection operation.

Write/Erase/Program Operations Alternate CE Controlled Writes

Parameter Symbols					22.17	40.1/	
JEDEC	Standard		Description		-90-X	-12-X	Unit
tavav	twc	Write Cycle Tim	e	Min.	90	120	ns
t avel	tas	Address Set Up	Time	Min.	0	0	ns
t ELAX	t ah	Address Hold Ti	me	Min.	45	50	ns
t DVEH	t os	Data Set Up Tim	пе	Min.	45	50	ns
t endx	t DH	Data Hold Time		Min.	0	0	ns
_	toes	Output Enable S	Set Up Time	Min.	0	0	ns
		Output Enable	Read	Min.	0	0	ns
_	t 0EH	Hold Time	Toggle and Data Polling	Min.	10	10	ns
t GHEL	t GHEL	Read Recover Time Before Write		Min.	0	0	ns
twlel	tws	WE Set Up Time	Э	Min.	0	0	ns
t eh w H	twн	WE Hold Time		Min.	0	0	ns
t eleh	t cp	CE Pulse Width		Min.	45	50	ns
t ehel	t cph	CE Pulse Width	High	Min.	20	20	ns
twhwh1	twnwh1	Byte Programming Operation Ty		Тур.	16	16	μs
		Sector Erase Operation (Note)		Тур.	1.5	1.5	sec
t whwh2	twhwh2	Sector Erase Op	Deration (NOte)	Max.	30	30	sec
_	tvcs	Vcc Set Up Time)	Min.	50	50	μs

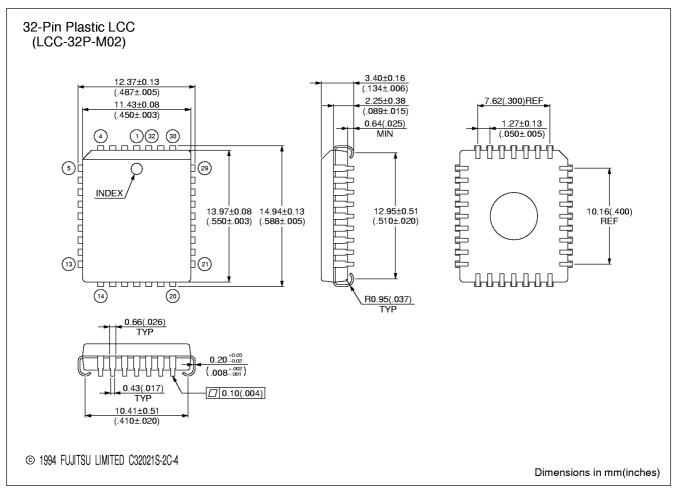
Note: This does not include the preprogramming time.

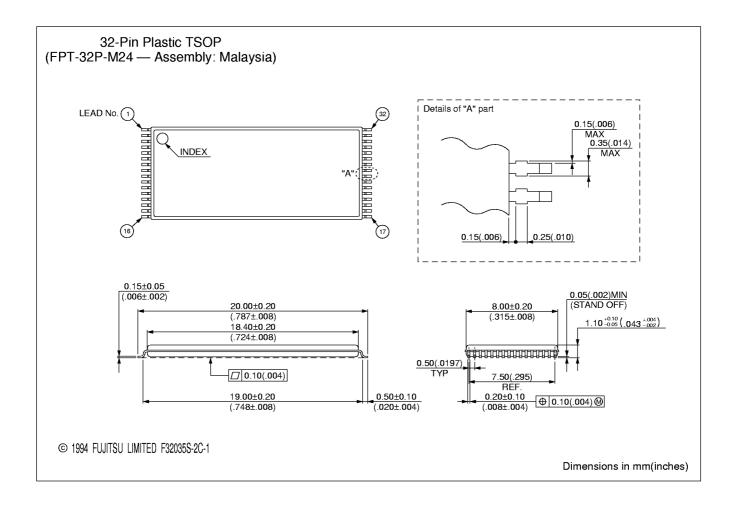
■ ERASE AND PROGRAMMING PERFORMANCE

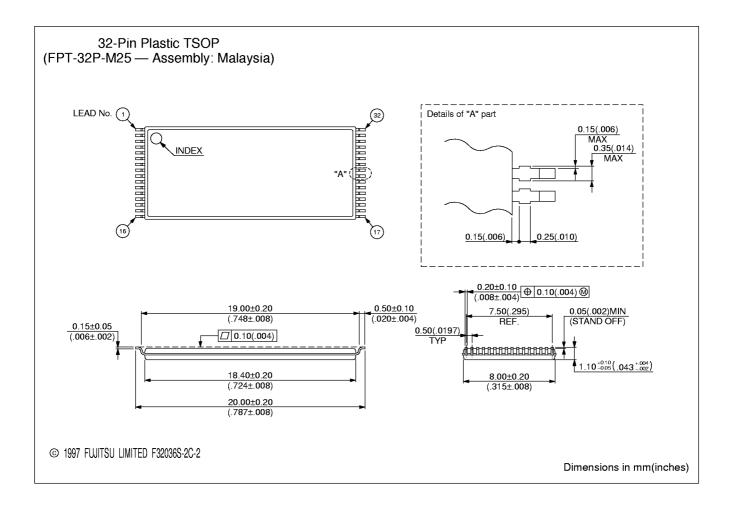
Parameter	Limits			Unit	Comments
Farameter	Min.	Тур.	Max.	Oilit	Comments
Sector Erase Time	_	1.5	30	sec	Excludes 00H programming prior to erasure
Byte Programming Time	_	8	500	μs	Excludes system-level overhead
Chip Programming Time	_	8.5	50	sec	Excludes system-level overhead
Erase/Program Cycle	100,000	_	_	cycles	

■ TSOP PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0	7	8	pF
Соит	Output Capacitance	Vout = 0	8	10	pF
C _{IN2}	Control Pin Capacitance	V _{IN} = 0	8.5	10	pF


Note: Test conditions T_A = 25°C, f = 1.0 MHz


■ PLCC PIN CAPACITANCE


Parameter Symbol	Parameter Description	Test Setup	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0	7	8	pF
Соит	Output Capacitance	Vout = 0	8	10	pF
C _{IN2}	Control Pin Capacitance	V _{IN} = 0	8.5	10	pF

Note: Test conditions T_A = 25°C, f = 1.0 MHz

■ PACKAGE DIMENSIONS

