Signetics

27C256/87C256 256K (32K × 8) CMOS UV Erasable PROM

Preliminary Specification

Application Specific Products

FEATURES

- CMOS/NMOS microcontroller and microprocessor compatible
 - 87C256-Integrated address latch
 - Universal 28-Pin memory site, 2-line control
- Low power consumption
 - 10mA maximum CMOS active current
 - 100μA maximum CMOS standby current
- High-performance speeds
 - 170ns maximum access time
- Noise immunity features
 - ± 10% V_{CC} tolerance
 - Maximum latch-up immunity through epitaxial processing
- Fast, reliable intelligent programming
 - 12.5V V_{PP}

DESCRIPTION

Signetics' 27C256 and 87C256 CMOS EPROMs are 256K-bit 5V only memories organized as 32,768 words of 8 bits. They employ advanced CMOS circuitry for systems requiring low power, high-performance speeds, and immunity to noise. The 87C256 has been optimized

for multiplexed bus microcontroller and microprocessor compatibility while the 27C256 has a non-multiplexed addressing interface and is plug compatible with the industry standard 27256.

The 27C256 and 87C256 achieve both high-performance (170ns access time for 27C256) and low power consumption (10mA active current maximum, CMOS inputs) making them, ideal for high-performance, portable equipment.

The highest degree of protection against latch-up is achieved through epitaxial processing. Prevention of latch-up is provided for stresses up to 100mA on address and data pins from -1V to V_{CC} +1V.

The 87C256 incorporates an address latch on the address pins to minimize chip count in multiplexed bus systems. Designers can tie combined (multiplexed) address-data processor busses directly into both the $A_0 - A_{14}$ and $O_0 - O_7$ pins of the 87C256. During ALE high (ALE/ $\overline{\text{CE}}$) the address information is allowed to flow into the EPROM and begin accessing the stored code. On the

falling edge of the ALE input (ALE/ $\overline{\text{CE}}$), address information at the address inputs is latched internally. The A_0-A_7 inputs are then ignored as data information is passed on the same bus from the EPROM O_0-O_7 Pins (ALE/ $\overline{\text{CE}}$ remains low).

CC

The 27C256 and 87C256 are offered in ceramic DIP Packages. Both devices can be programmed with standard EP-ROM Programmers and the intelligent programming algorithm may be utilized.

PIN CONFIGURATION

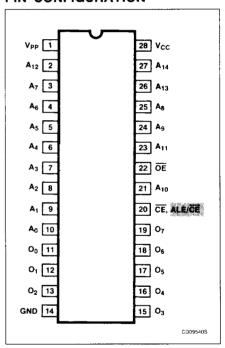
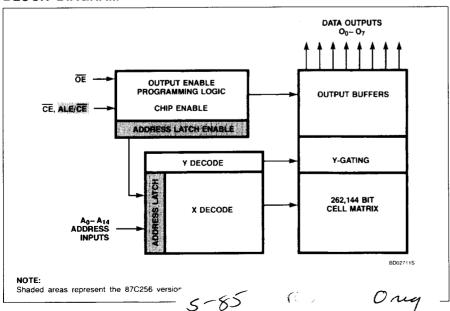



Table 1. Pin Names

A ₀ – A ₁₄	Addresses			
O ₀ – O ₇	Outputs			
ŌĒ	Output enable			
CE	Chip enable			
ALE/CE	Address latch enable/chip enable			
GND	Ground			
V _{PP}	Program voltage			
V _{CC}	Power supply			

BLOCK DIAGRAM

001789

1 1789

516