🗖 0257526 0037290 7**29 📰**

IND: -14/18/24

MACH215-12/15/20

High-Density EE CMOS Programmable Logic

DISTINCTIVE CHARACTERISTICS

- 44 Pins
- **32 Output Macrocells**
- **32 Input Macrocells**
- Product terms for:
 - Individual flip-flop clock
 - Individual asynchronous reset, preset
 - Individual output enable
- 12 ns tpp Commercial 14.5 ns tpp Industrial
- 67 MHz fcnt

GENERAL DESCRIPTION

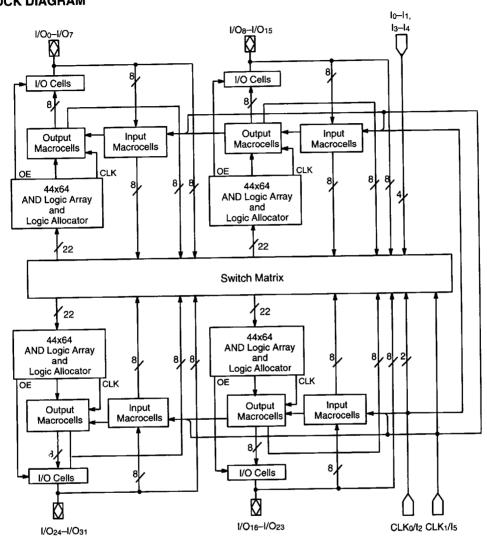
The MACH215 is a member of AMD's high-performance EE CMOS MACH device family. This device has approximately three times the capability of the popular PAL20RA10 without loss of speed. This device is designed for use in asynchronous as well as synchronous applications.

The MACH215 consists of four PAL blocks interconnected by a programmable switch matrix. The four PAL blocks are essentially "PAL22RA8" structures complete with product-term arrays and programmable macrocells, individual register control product terms, and input registers. The switch matrix connects the PAL blocks to each other and to all input pins, providing a high degree of connectivity between the fully-connected PAL blocks. This allows designs to be placed and routed efficiently.

The MACH215 has two kinds of macrocell: output and input. The MACH215 output macrocell provides registered, latched, or combinatorial outputs with programmable polarity. If a registered configuration is chosen, the register can be configured as D-type or T-type to help reduce the number of product terms. The register type decision can be made by the designer or by the software. Each macrocell has its own dedicated clock, asynchronous reset, and asynchronous preset control. The polarity of the clock signal is programmable. All output macrocells can be connected to an I/O cell.

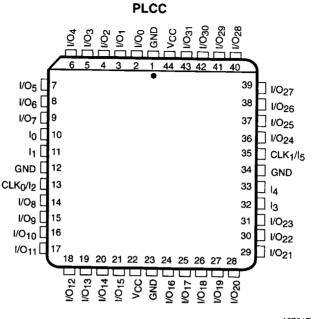
The MACH215 has dedicated input macrocells which provide input registers or latches for synchronizing input signals and reducing setup time requirements.

Advanced Micro Devices


1-161

- 38 Inputs with pull-up resistors
- 32 Outputs
- 64 Flip-flops
- For asynchronous and synchronous applications
- 4 "PAL22RA8" blocks with buried macrocells
- Pin-compatible with MACH110, MACH111, MACH210, and MACH211

FINAL

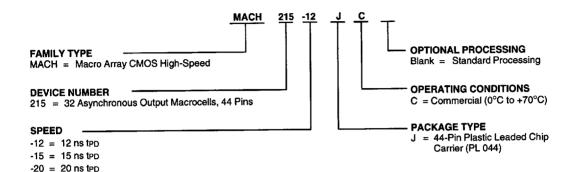

COM'L: -12/15/20

16751E-1

CONNECTION DIAGRAM Top View

16751E-2

PIN DESIGNATIONS


- CLK/I = Clock or Input
- GND = Ground
- I = Input
- I/O = Input/Output
- Vcc = Supply Voltage

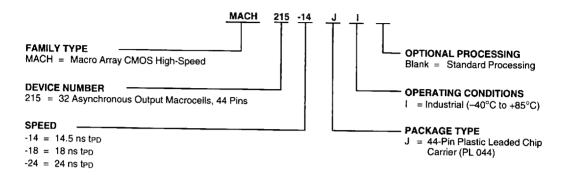
02575260037292 5T1 🎟

ORDERING INFORMATION

Commercial Products

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Valid Combina	tions
MACH215-12	
MACH215-15	JC
MACH215-20	


Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

0257526 0037293 438 🔳

ORDERING INFORMATION Industrial Products

AMD programmable logic products for industrial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Valid Combina	itions
MACH215-14	
MACH215-18	JI
MACH215-24	1

Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

0257526 0037294 374 📖

FUNCTIONAL DESCRIPTION

The MACH215 consists of four asynchronous PAL blocks connected by a switch matrix. There are 32 I/O pins and 4 dedicated input pins feeding the switch matrix. These signals are distributed to the four PAL blocks for efficient design implementation. There are also two additional global clock pins that can be used as dedicated inputs. This device provides two kinds of macrocell: output macrocells and input macrocells. This adds greater logic density without affecting the number of pins.

The PAL Blocks

Each PAL block in the MACH215 (Figure 1) contains a 64-product-term array, a logic allocator, 8 output macrocells, 8 input macrocells, and 8 I/O cells. The switch matrix feeds each PAL block with 22 inputs. This makes the PAL block look effectively like an independent "PAL22RA8" with 8 input macrocells. All flip-flops within the device can operate independently.

The Switch Matrix

The MACH215 switch matrix is fed by the inputs and feedback signals from the PAL blocks. Each PAL block provides 16 internal feedback signals and 8 I/O feedback signals. The switch matrix distributes these signals back to the PAL blocks in an efficient manner that also provides for high performance. The design software automatically configures the switch matrix when fitting a design into the device.

The Product-term Array

The MACH215 product-term array consists of 32 product terms for logic use and 32 product terms for generating macrocell control signals.

The Logic Allocator

The logic allocator in the MACH215 (Figure 2) takes the 32 logic product terms and allocates them to the 16 macrocells as needed. Each macrocell can be driven by up to 12 product terms. The design software automatically configures the logic allocator when fitting the design into the device.

Table 1 illustrates which product term clusters are available to each macrocell within a PAL block. Refer to Figure 1 for cluster and macrocell numbers.

Table 1. Logic Allocation

Output Macrocell	Available Clusters
Mo	Co, C1
M1	C0, C1, C2
M2	C1, C2, C3
Мз	C2, C3, C4
M4	C3, C4, C5
M5	C4, C5, C6
M6	C5, C6, C7
M7	C6, C7

The Macrocell

There are two types of macrocell in the MACH215: output macrocells and input macrocells. The output macrocell takes the logic of the device and provides it to I/O pins and/or provides feedback for additional logic generation. The input macrocell allows I/O pins to be configured as registered or latched inputs.

The output macrocell (Figure 3) can generate registered or combinatorial outputs. In addition, a transparent-low latched configuration is provided. If used, the register can be configured as a T-type or a D-type flip-flop. Register and latch functionality is defined in Table 2. Programmable polarity and the T-type flip-flop both give the software a way to minimize the number of product terms needed. These choices can be made automatically by the software when it fits the design into the device.

Configuration	D/T	CLK/LE*	Q+
D-Register	X	0, 1, ↓ (↑)	Q
	0	↑ (↓)	0
	1	↑ (↓)	1
T-Register	X 0 1	0, 1, ↓ (↑) ↑ (↓) ↑ (↓)	a ala
Latch	X	1 (0)	Q
	0	0 (1)	0
	1	0 (1)	1

Table 2. Register/Latch Operation

*Polarity of CLK/LE can be programmed.

0257526 0037295 200 🔳

The output macrocell sends its output back to the switch matrix, via internal feedback, and to the I/O cell. The feedback is always available regardless of the configuration of the I/O cell. This allows for buried combinatorial or registered functions, freeing up the I/O pins for use as inputs if not needed as outputs. The basic output macrocell configurations are shown in Figure 4.

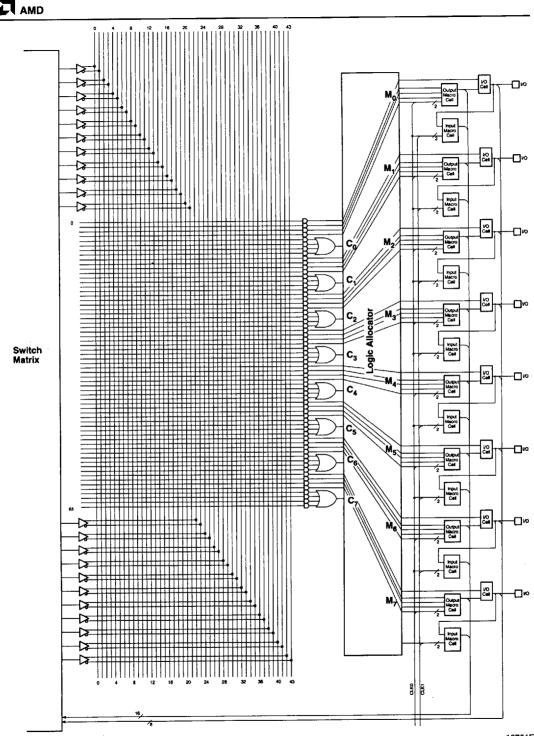
The clock/latch-enable for each individual output macrocell can be driven by one of four signals. Two of the signals are provided by the global clock pin CLK_0/LE_0 ; either polarity may be chosen. The other two signals come from a product term provided for each output macrocell. Either polarity of the logic generated by the product term can be chosen. The global clock pin is also available as an input, although care must be taken when a signal acts as both clock and input to the same device.

Each individual output macrocell also has a product term for asynchronous reset and a product term for asynchronous preset. This means that any register or latch may be reset or preset without affecting any other register or latch in the device. The functionality of the flip-flops with respect to initialization is illustrated in Table 3.

Table 3. Asynchronous Reset/Preset Operation

AR	AP	CLK/LE	Q+
0	0	X	See Table 12
0	1	Х	1
1	0	X	0
1	1	X	0

The input macrocell (Figure 5) consists of a flip-flop that can be used to provide registered or latched inputs. The flip-flop can be clocked by either polarity of one of the two global clock/latch-enable pins.


Reset or preset are not provided for these flip-flops. If combinatorial inputs are desired, this macrocell is not used, and the feedback from the I/O pin is used directly. Both the I/O pin feedback and the output of the input register or latch are always available to the switch matrix.

Possible input macrocell configurations are shown in Figure 6.

The I/O Cell

The I/O cell (Figure 7) provides a three-state output buffer. The three-state control is provided by an individual product term for each I/O cell. Depending on the logic programmed onto this product term, the I/O pin can be configured as an output, an input, or a bidirectional pin. The feedback from the I/O pin is always available to the switch matrix, regardless of the state of the output buffer or the output macrocell.

02575260037296147 🔳

16751E-3

Figure 1. MACH215 PAL Block MACH215-12/15/20

■ 0257526 0037297 083 ■

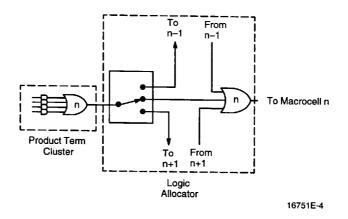
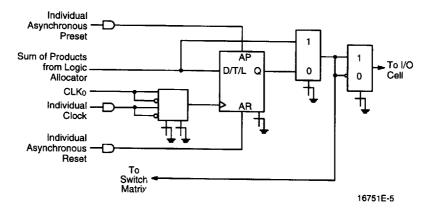
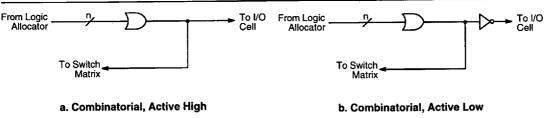
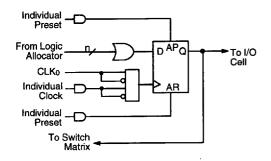
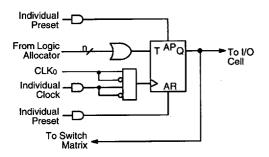
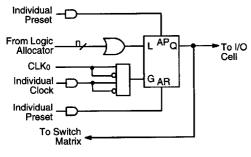
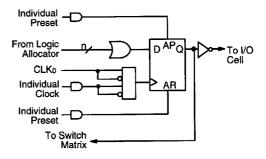
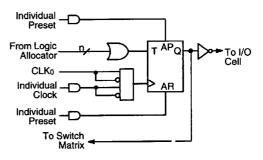





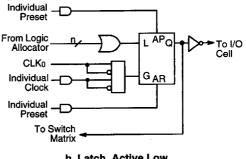
Figure 2. Product Term Clusters and the Logic Allocator



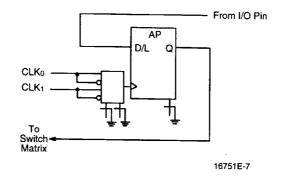



c. D-type Register, Active High

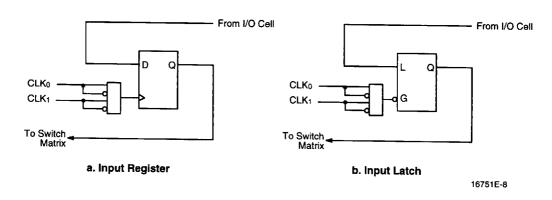

e. T-type Register, Active High


g. Latch, Active High

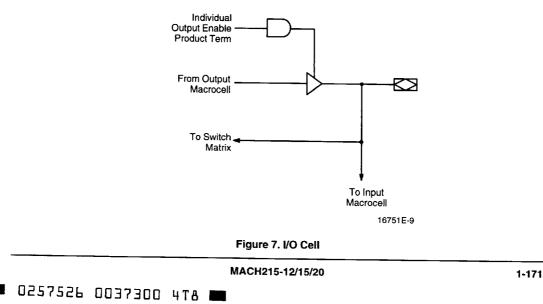
f. T-type Register, Active Low


h. Latch, Active Low

16751E-6



MACH215-12/15/20


0257526 0037299 956

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
Ambient Temperature with Power Applied
Supply Voltage with
Respect to Ground0.5 V to +7.0 V
DC Input Voltage0.5 V to Vcc + 0.5 V
DC Output or I/O
Pin Voltage
Static Discharge Voltage 2001 V
Latchup Current
$(T_A = 0^{\circ}C \text{ to } +70^{\circ}C) \dots 200 \text{ mA}$
Stresses above those listed under Absolute Maximum Ratings

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES Commercial (C) Devices

Temperature (T_A) Operating in Free Air 0°C to +70°C

Supply Voltage (Vcc) with	
Respect to Ground	+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Тур	Мах	Unit
Vон	Output HIGH Voltage	$I_{OH} = -3.2 \text{ mA}, V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	2.4			v
Vol	Output LOW Voltage	l _{OL} = 24 mA, V _{CC} = Min V _{IN} = V _{IH} or V _{IL} (Note 1)			0.5	v
Vін	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 2)	2.0			>
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 2)			0.8	V
lıн	Input HIGH Current	V _{IN} = 5.25 V, V _{CC} = Max (Note 3)			10	μA
	Input LOW Current	V _{IN} = 0 V, V _{CC} = Max (Note 3)			-100	μA
lozн	Off-State Output Leakage Current HIGH	V _{OUT} = 5.25 V, V _{CC} = Max V _{IN} = V _{IH} or V _{IL} (Note 3)			10	μA
loz∟	Off-State Output Leakage Current LOW	$V_{OUT} = 0 V, V_{CC} = Max$ $V_{IN} = V_{IH} \text{ or } V_{IL} \text{ (Note 3)}$			-100	μA
Isc	Output Short-Circuit Current	V _{OUT} = 0.5 V, V _{CC} = Max (Note 4)	-30		-160	mA
lcc	Supply Current (Typical)	V _{CC} = 5 V, T _A = 25°C, f = 25 MHz (Note 5)		95		mA

Notes:

1. Total IoL for one PAL block should not exceed 128 mA.

2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included. 3. I/O pin leakage is the worst case of IIL and IozL (or IIH and IozH).

Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

 Measured with a 16-bit up/down counter pattern. This pattern is programmed in each PAL block and is capable of being loaded, enabled, and reset.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditio	Test Conditions			
CIN	Input Capacitance	VIN = 2.0 V	$V_{CC} = 5.0 V, T_A = 25^{\circ}C,$	6	ρF	
Соит	Output Capacitance	Vout = 2.0 V	f = 1 MHz	8	pF	

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter	-					2		5	1	20	
Symbol	Parameter Description			Min	Max	Min	Max	Min	Max	Unit	
t _{PD}	Input, I/O, or Feedback to Combinatorial Output (Note 3)			3	12	3	15	3	20	ns	
tsa	Setup Time	Time from Input, I/O, or		D-type	5		6		8		пѕ
	Feedback to	Product Term Clock		T-type	6		7		9		ns
tна	Register Dat	ta Hold Time Using P	roduct Term Cloc	k	5		6		8	······	ns
tcoa	Product Terr	m Clock to Output (No	ote 3)		4	14	4	18	4	22	ns
twla	Product Tor	m, Clock Width		LOW	8		9		12		ns
twha	1 TOGUCE TEN			HIGH	8		9		12		ns
	Maximum			D-type	52.6		41.7		33.3		MHz
	Frequency Using	External Feedback	1/(tsa + tcoa)	T-type	50		40		32.2		MHz
fmaxa	Product			D-type	58.8		45.5		35.7		MHz
	Term Clock	Internal Feedback (i	ÍCNTA)	T-type	55.6		43.5		34.5		MHz
	(Note 1)	No Feedback	1/(twla + twha)	<u> </u>	62.5	_	55.6		41.7		MHz
tss	Setup Time from Input, I/O, or Feedback to Global Clock			D-type	7		10		13		ns
.55				T-type	8		11		14		ns
tHS	Register Data Hold Time Using Global Clock			0		0	·	0		ns	
tcos	Global Clock to Output (Note 3)			2	8	2	10	2	12	ns	
twLs				LOW	6		6		8		ns
twнs	Global Clock Width			HIGH	6		6		8		ns
	Maximum	Aaximum Frequency External Feedback 1/(tss + tcos)	D-type	66.7		50		40		MHz	
	Frequency Using		T-type	62.5		47.6		38.5		MHz	
fmaxs	Global		<u> </u>	D-type	83.3		66.6		50		MHz
	Clock (Note 1)	Internal Feedback (fonts)	T-type	76.9		62.5		47.6		MHz
	(NOIE I)	No Feedback	1/(twis + twis)	<u> </u>	83.3		83.3		62.5		MHz
tsla	Setup Time f or Feedback	rom Input, I/O, to Product Term Gat			5		6		8		ns
thla		Iold Time Using Prod			5		6		8		ns
t GOA	Product Terr	n Gate to Output (Not	ie 3)			16		19		22	
tgwa	Product Term Gate Width LOW (for LOW transparent) or HIGH (for HIGH transparent)			8		9		12		ns	
tsls	Setup Time from Input, I/O, or Feedback to Global Gate			7		10		13		ns	
t _{HLS}		lold Time Using Glob			0		0		0		
tgos	Gate to Outp		······································			10		11		12	ns
tgws	Global Gate or HIGH (for	Width LOW (for LOW HIGH transparent)	transparent)	<u>-</u>	6		6		8		ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2) (continued)

Parameter			-12	2	-1	-15 -20)	
Symbol	Parameter Description		Min	Max	Min	Max	Min	Max	Unit
t PDL	Input, I/O, or Feedback to Output Through Transparent Input or Output Latch			14		17		22	ns
tsia	Input Register Setup Time		2		2		2		ns
tHIR	Input Register Hold Time		2		2.5		3		ns
tico	Input Register Clock to Combinatorial Output			15		18		23	ns
tics	Input Register Clock to Output Register Setup	D-type	12		15		20		ns
		T-type	13		16		21		ns
twici	Input Register Clock Width	LOW	6		6		8		ns
twich		HIGH	6		6		8		ns
fmaxir	Maximum Input Register Frequency 1/(twicL +	twicн)	83.3		83.3		62.5		MH:
tsiL	Input Latch Setup Time		2		2		2		ns
t⊢ı∟	Input Latch Hold Time		2		2.5		3		ns
tigo	Input Latch Gate to Combinatorial Output			17		20		25	ns
tigol	Input Latch Gate to Output Through Transparent Output Latch		19		22		27	ns	
tslla	Setup Time from Input, I/O, or Feedback Through Transparent Input Latch to Product Term Output Latch Gate				8		10		ns
tigsa	Input Latch Gate to Output Latch Setup Using Product Term Output Latch Gate				8		10		ns
tsus	Setup Time from Input, I/O, or Feedback Through Transparent Input Latch to Global Output Latch Gate				12		15		ns
tiess	Input Latch Gate to Output Latch Setup Using Global Output Latch Gate				16		21		ns
twigL	Input Latch Gate Width LOW		6		6		8		ns
t PDLL	Input, I/O, or Feedback to Output Through Trans Input and Output Latches	parent		16		19		24	ns
tan	Asynchronous Reset to Registered or Latched O	utput		16		20		25	ns
tanw	Asynchronous Reset Width (Note 1)		12		15		20		ns
tarr	Asynchronous Reset Recovery Time (Note 1)				10		15		ns
tap	Asynchronous Preset to Registered or Latched Output			16		20		25	ns
tapw	Asynchronous Preset Width (Note 1)		12		15		20	L	ns
tapr	Asynchronous Preset Recovery Time (Note 1)		8		10		15		ns
tea	Input, I/O, or Feedback to Output Enable (Note 3)	2	12	2	15	2	20	ns
ter	Input, I/O, or Feedback to Output Disable (Note	3)	2	12	2	15	2	20	ns

Notes:

 These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where frequency may be affected.

 See Switching Test Circuit for test conditions. Switching waveforms illustrate true clocks only. Switching waveforms can be used to illustrate both synchronous and asynchronous clock timing. For example, tss is the ts parameter for synchronous clocks and tsh is the ts parameter for asynchronous clocks.

3. Parameters measured with 16 outputs switching.

MACH215-12/15/20 (Com'l)

🖩 0257526 0037303 107 🛲

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage with Respect to Ground
DC Input Voltage
DC Output or
I/O Pin Voltage0.5 V to Vcc + 0.5 V
Static Discharge Voltage 2001 V
Latchup Current
$(T_A = -40^{\circ}C \text{ to } +85^{\circ}C) \dots 200 \text{ mA}$
Streepenshows the set of the set

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

INDUSTRIAL OPERATING RANGES

Ambient Temperature (T _A) Operating in Free Air40°C to +85°C
Supply Voltage (V _{CC}) with Respect to Ground

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over INDUSTRIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min 2.4	Тур	Max	Unit	
Voн	Output HIGH Voltage	$l_{OH} = -3.2 \text{ mA}, V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$				V	
Vol	Output LOW Voltage	I _{OL} = 24 mA, V _{CC} = Min V _{IN} = V _{IH} or V _{IL} (Note 1)			0.5	v	
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 2)	2.0			V	
VIL					0.8	v	
lin	Input HIGH Leakage Current	V _{IN} = 5.25 V, V _{CC} = Max (Note 3)			10	μA	
l _{iL}	Input LOW Leakage Current	VIN = 0 V, Vcc = Max (Note 3)			-100	μA	
lozh	Off-State Output Leakage Current HIGH	$V_{OUT} = 5.25 \text{ V}, V_{CC} = \text{Max}$ $V_{IN} = V_{IH} \text{ or } V_{IL} \text{ (Note 3)}$			10	μA	
lozi	Off-State Output Leakage Current LOW	$V_{OUT} = 0 V, V_{CC} = Max$ $V_{IN} = V_{IH} \text{ or } V_{IL} (Note 2)$			-100	μA	
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max (Note 4)	-30		-160	mA	
lcc	Supply Current (Typical)	Vcc = 5 V, T _A = 25°C, f = 25 MHz (Note 5)		95		mA	

Notes:

1. Total IoL for one PAL block should not exceed 128 mA.

0257526 0037304 043 **1**

2. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.

3. I/O pin leakage is the worst case of IIL and IozL (or IIH and IozH).

4. Not more than one output should be shorted at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Measured with a 16-bit up/down counter pattern. This pattern is programmed in each PAL block and is capable of being loaded, enabled, and reset.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditio	ons	Тур	Unit
Cin	Input Capacitance	V _{IN} = 2.0 V	$V_{CC} = 5.0 \text{ V}, \text{ T}_{\text{A}} = 25^{\circ}\text{C},$	6	pF
Cour	Output Capacitance	Vout = 2.0 V	f = 1 MHz	8	pF

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note 2)

Parameter			-14	ŧ	-18		-24				
Symbol			Min	Max	Min	Max	Min	Max	Unit		
teo	Input, I/O, or Feedback to Combinatorial Output (Note 3)				14.5		18		24	ns	
tsa	Setup Time f	from Input, I/O, or		D-type	6		7.5		10		ns
LSA	Feedback to	Product Term Clock		T-type	7.5		8.5		11		ns
tна	Register Dat	a Hold Time Using P	roduct Term Cloc	k	6		7.5		10		ns
tcoa	Product Term	n Clock to Output (No	ote 3)			17		22		26.5	ns
twla	Product Terr	n, Clock Width		LOW	10		11		15		ns
twha	1 Youddt Foll			HIGH	10		11		15		ns
	Maximum	External Feedback	$1/(t_{SA} + t_{COA})$	D-type	42		33		26.5		MHz
	Frequency Using	EXIGINAL FEEDDACK	IT(ISA + ICOA)	T-type	40		32		25.5		MHz
fmaxs	Product			D-type	47		36		28.5		MHz
IMAXS	Term	Internal Feedback (fcnta)		T-type	44		34.5		27.5		MHz
	Clock (Note 1)	No Feedback	1/(twla + twha)		50		44.5		33		MHz
	Setup Time f	Time from Input, I/O,		D-type	8.5		12		16		ns
tss	or Feedback to Global Clock T-type			10		13.5		17		ns	
t _{HS}	Register Dat	a Hold Time Using G	lobal Clock		0		0		0		ns
tcos	Giobal Clock	to Output (Note 3)				10		12		14.5	ns
twis				LOW	7.5		7.5		10		ns
twhs	Global Clock	Width		HIGH	7.5		7.5		10		ns
	Maximum	External Feedback	1/(tss + 100s)	D-type	53		40		32		MHz
	Frequency Using Global Clock			T-type	50		38		30.5		MHz
f MAXS		Internal Feedback ((fonts)	D-type	66.5		53		40		MHz
				T-type	61.5		50		38		MHz
	(Note 1) No Feedback 1/(twis + twis)			66.5		66.5		50		MHz	
tsla		from Input, I/O, to Product Term Gat	e		6		7.5		10		ns
t hla		Iold Time Using Proc			6		7.5		10		ns
tgoa	Product Terr	m Gate to Output (No	te 3)			19.5		23		26.5	ns
tgwa	Product Term Gate Width LOW (for LOW transparent) or HIGH (for HIGH transparent)		10		11		14.5		ns		
tsLs	Setup Time from Input, I/O, or Feedback to Global Gate			8.5		12	i	16		ns	
t _{HLS}	Latch Data Hold Time Using Global Gate		0		0		0		ns		
tgos	Gate to Outp					12		13.5		14.5	ns
taws	Global Gate or HIGH (for	Width LOW (for LOW HIGH transparent)	/ transparent)		7.5		7.5		10		ns

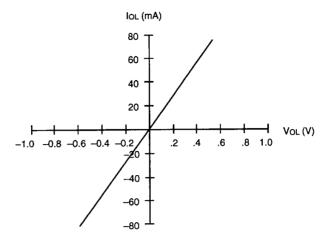
SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note 2) (continued)

Parameter			-1	-14		-18		-24	
Symbol	Parameter Description		Min	Max	Min	Max	Min	Max	Unit
t _{PDL}	Input, I/O, or Feedback to Output Through Transparent Input or Output Latch			17		20.5		26.5	ns
tsir	Input Register Setup Time		2.4		2.4		2.4		ns
t _{HIR}	Input Register Hold Time		3		3.5		4		ns
tico	Input Register Clock to Combinatorial Output			18		22		28	ns
tics	Input Register Clock to Output Register Setup	D-type	14.5		18		24		ns
		T-type	16		19.5		25.5		ns
twicL		LOW	7.5		7.5		10		ns
twich	Input Register Clock Width	HIGH	7.5		7.5		10		ns
f_{MAXIR}	Maximum Input Register Frequency 1/(twicL + tw	vicн)	66.5		66.5		50		MHz
tsil	Input Latch Setup Time		2.5		2.5		2.5		ns
t _{HiL}	Input Latch Hold Time		3		3.5		4		ns
tigo	Input Latch Gate to Combinatorial Output			20.5		24		30	ns
tigol	Input Latch Gate to Output Through Transparent Output Latch			23		26.5		32.5	ns
t slla	Setup Time from Input, I/O, or Feedback Through Transparent Input Latch to Product Term Output Latch Gate		8.5		10		12	·	ns
tigsa	Input Latch Gate to Output Latch Setup Using Product Term Output Latch Gate		8.5		10	-	12		ns
tsils	Setup Time from Input, I/O, or Feedback Through Transparent Input Latch to Global Output Latch Gate		11		14.5	_	18		пs
tigss	Input Latch Gate to Output Latch Setup Using Global Output Latch Gate		16		19.5		25.5		ns
twigL	Input Latch Gate Width LOW		7.5		7.5		10		ns
t _{PDLL}	Input, I/O, or Feedback to Output Through Transp. Input and Output Latches	arent		19.5		23		29	ns
tar	Asynchronous Reset to Registered or Latched Ou	tput		19.5		24		30	ns
tarw	Asynchronous Reset Width (Note 1)		14.5		18		24		ns
t _{ARR}	Asynchronous Reset Recovery Time (Note 1)		10	- 1	12		18		
t _{AP}	Asynchronous Preset to Registered or Latched Output			19.5		24		30	ns
tapw	Asynchronous Preset Width (Note 1)		14.5		18		24		ns
t _{apr}	Asynchronous Preset Recovery Time (Note 1)		10		12		18		ns
tea	Input, I/O, or Feedback to Output Enable (Note 3)			14.5		18		24	ns
t _{ER}	Input, I/O, or Feedback to Output Disable (Note 3)			14.5		18		24	ns

Notes:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where frequency may be affected.

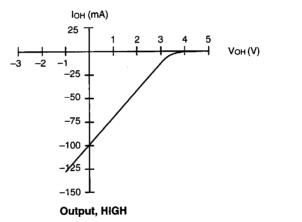
 See Switching Test Circuit for test conditions. Switching waveforms illustrate true clocks only. Switching waveforms can be used to illustrate both synchronous and asynchronous clock timing. For example, tss is the ts parameter for synchronous clocks and tsh is the ts parameter for asynchronous clocks.

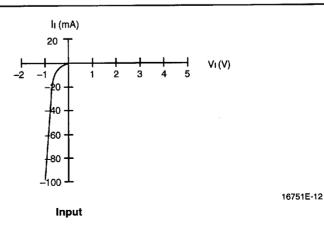

3. Parameters measured with 16 outputs switching.

0257526 0037306 916 🔳

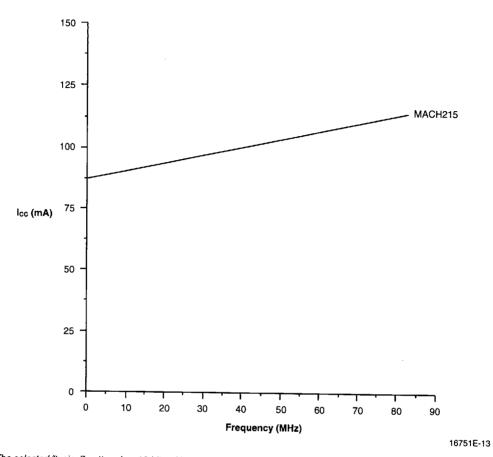
TYPICAL CURRENT VS. VOLTAGE (I-V) CHARACTERISTICS

 $V_{CC} = 5.0 V, T_A = 25^{\circ}C$




MACH215-12/15/20

🔳 0257526 0037307 852 💻


16751E-10

16751E-11

TYPICAL Icc CHARACTERISTICS $V_{CC} = 5 V_1 T_A = 25^{\circ}C$

The selected "typical" pattern is a 16-bit up/down counter. This pattern is programmed in each PAL block and is capable of being loaded, enabled, and reset.

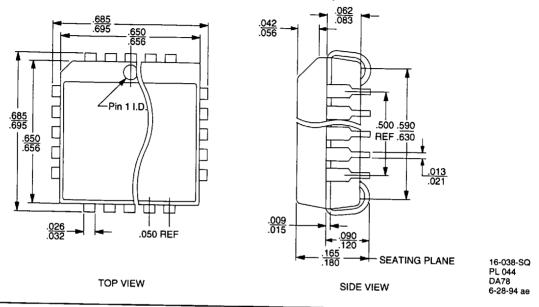
Maximum frequency shown uses internal feedback and a D-type register.

🛤 0257526 0037308 799 🎟

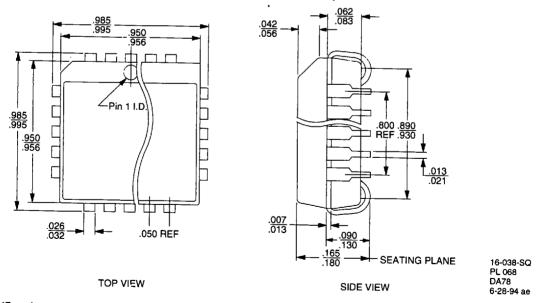
TYPICAL THERMAL CHARACTERISTICS

Measured at 25°C ambient. These parameters are not tested.

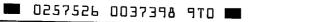
Parameter			Тур	
Symbol	Parameter Description		PLCC	Units
θјс	Thermal impedance, junction to case		15	°C/W
θja	Thermal impedance, junction to ambient		40	°C/W
0 jma	Thermal impedance, junction to ambient with air flow	200 lfpm air	36	°C/W
-		400 lfpm air	33	°C/W
		600 lfpm air	31	°C/W
		800 lfpm air	29	°C/W

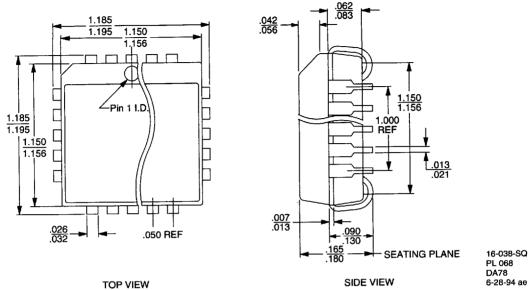

Plastic 0jc Considerations

The data listed for plastic θ ic are for reference only and are not recommended for use in calculating junction temperatures. The heat-flow paths in plastic-encapsulated devices are complex, making the θ ic measurement relative to a specific location on the package surface. Tests indicate this measurement reference point is directly below the die-attach area on the bottom center of the package. Furthermore, θ ic tests on packages are performed in a constant-temperature bath, keeping the package surface at a constant temperature. Therefore, the measurements can only be used in a similar environment.

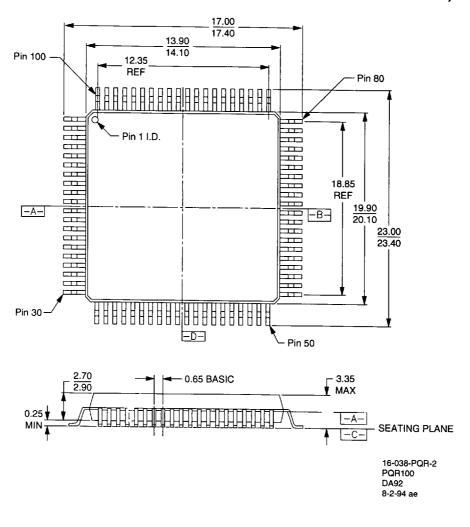

PHYSICAL DIMENSIONS*

PL 044


44-Pin Plastic Leaded Chip Carrier (measured in inches)



*For reference only. BSC is an ANSI standard for Basic Space Centering.



*For reference only. BSC is an ANSI standard for Basic Space Centering.

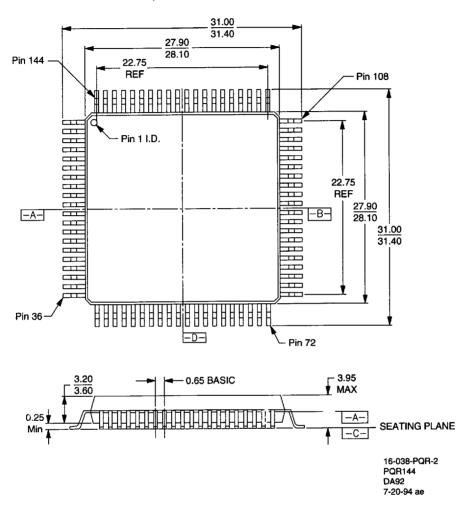
0257526 0037399 837 🎟

Physical Dimensions

PHYSICAL DIMENSIONS* PQR100 100-Pin Plastic Quad Flat Pack; Trimmed and Formed (measured in millimeters)

Note:

Although the POR100 package is drawn as a square package, the actual package is rectangular as the dimensions suggest.

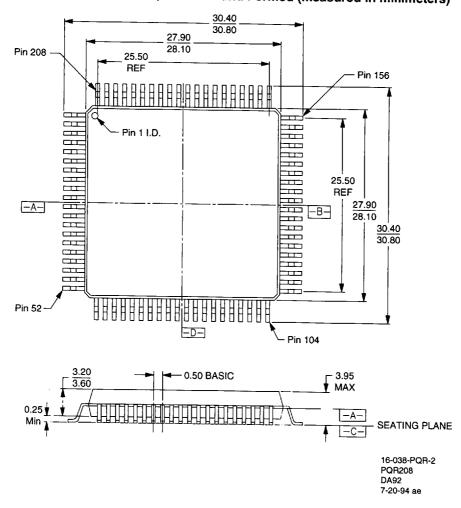

*For reference only. BSC is an ANSI standard for Basic Space Centering.

0257526 0037400 389 🖿

PHYSICAL DIMENSIONS*

PQR144

144-Pin Plastic Quad Flat Pack; Trimmed and Formed (measured in millimeters)

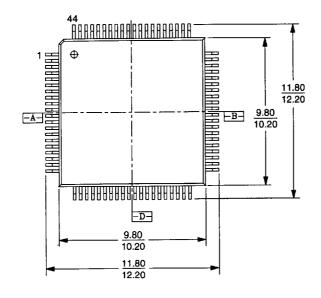


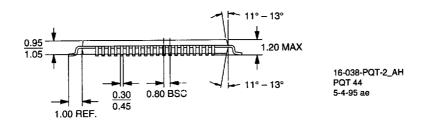
*For reference only. BSC is an ANSI standard for Basic Space Centering.

3-30

Physical Dimensions

PHYSICAL DIMENSIONS* PQR208 208-Pin Plastic Quad Flat Pack; Trimmed and Formed (measured in millimeters)


*For reference only. BSC is an ANSI standard for Basic Space Centering.


■ 0257526 0037402 151 |

PHYSICAL DIMENSIONS*

PQT044

44-Pin Thin Quad Flat Pack (measured in millimeters)

*For reference only. BSC is an ANSI standard for Basic Space Centering.

0257526 0037403 098 💻

Physical Dimensions