HD6800, HD68A00, HD68B0O0—

MPU (Micro Processing Unit)

The HD6800 is a monolithic 8-bit microprocessor forming
the central control function for Hitachi's HMCS6800 family.
Compatible with TTL, the HD680Q as with all HMCS6800
system parts, requires only one 5V power supply, and no ex-
temal TTL devices for bus interface. The HD68AOO and
HD68B0O are high speed versions.

The HD680O is capable of addressing 65k bytes of mem-
ory with its 16-bit address lines. The 8-bit data bus is bi-direc-
tional as well as 3-state, making direct memory addressing and
multiprocessing applications realizable.

= FEATURES
e Versatile 72 Instruction — Variable Length {1~3 Byte)
® Seven Addressing Modes — Direct, Relative, Immediate,

Indexed, Extended, Implied and Accumulator

@ Variable Length Stack

& Vectored Restart

® Maskable Interrupt

® Separate Non-Maskable Interrupt — Internal Registers Saved
in Stack

® Six Internal Registers — Two Accumulators, Index Register,
Program Counter, Stack Pointer and Condition Code Register

e Direct Memory Accessing (DMA) and Muitiple Processor
Capability

® Clock Rates as High as 2.0 MHz (HDB8B0O - 1 MHz,
HD68AQ00 --- 1.5 MHz, HD68BOO --- 2.0 MHz)

® Halt and Single Instruction Execution Capability

® Compatible with MC6800, MCE8A00 and MCE8B0Q

s BLOCK DIAGRAM

As Au Ay AL AL AL A A
2% 28 23 27 20 8 18 0

AL AL A A,
113 12 N

HD6800P, HD6BAOOP, HD68BOOP

(DP-40)

A,
0

Ay
9

QOutput Buffers OGutput Butfars

TITiirtt fiiiiid
B ]

LIy pam—

AES 40—l Program :— : Program
.|
T 6 — Counter , Counter |

HALT 22—

—_ Srack Srack
TG 4= ingrrection - ] Femer
TSC 39— Decode

and

DBE 36 —yf Control
Index
BA 7'--1 Register |

vMa & &=

index
Register L

RAN 34 =it Accumulatar
A

tnstruction F
Register

Data Butfer

G HITACHI

® PIN ARRANGEMENT

rrrPrrr>

HD6800

(Top View)

195




HD6800,HD68A00,HD68BOO —

= ABSOLUTE MAXIMUM RATINGS

Item Symbol Value Unit
Supply Voltage Vee* -0.3~+7.0 Y,
Input Voltage Vi * ~03~+7.0 v
Operating Temperature Topr -20~+75 °c
Storage Temperature Tets - 55~ +150 °c

* With respect to Vgg {SYSTEM GND}
{NOTE) Permanent LS| damage may occur if maximum rating are exceeded. Normal operation should be under recommended operating conditions.
If these conditions are exceeded, it could affect reliability of LSI.

s RECOMMENDED OPERATING CONDITION

Item Symbol min typ max Unit
Supply Voltage Vee® 475 5.0 5.26 \
Vil”® -0.3 - 0.8 \
Input Voltage =
Vin 2.0 - Vee Y,
Operating Temperature Topr -20 | 25 75 °C
* With respect 10 Vgg (SYSTEM GND}
= ELECTRICAL CHARACTERISTICS
® DC CHARACTERISTICS (Vgc = 5V £ 5%, Vgg = 0V, Ta = -20~+75°C, unless otherwise noted.)
Item Symbol§ Test Condition min ’ typ” max Unit
Input “’High’’ Voltage | Lorgic” Vig | ‘ 20 | - Vee v
Input “Low* Voltage Logic** Vie . -03 — | 08 \
Clock Input “*High'* Voltage | ¢;, ¢2 ' Ve | 1 Vec-08 - Vee+ 0.3 v
Clock Input “Low” Voltage | ¢, 2 Ve | 03 |~ | o4 v
| Do~D;, ' loy = —205uA 24 - - Vv
A= = 1 f T
Qutput ""High'' Voltage ‘ O?VEAAIS RW Vou loy = ~145uA 24 - - \
BA &H = -100uA 24 -~ — v
Output‘‘Low” Voltage VoL loL =1.6mA - - 04 \Y
Logic*** | Vip =0~56.25V, -2.5 - 2.5 uA
| t in All other pins are connected
nput Leakage Current 1. 62 el 2100 _ 100 7y
Three-State (Off-state) Do~D> | v Lo -10 - 10 HA
P ——— =04~ 2. —
Input Current [Ag~As,. RN | ™ in 0.4~ 24V 2100 - 100 uA
Power Dissipation Po ! - 0.6 1.0 w
! Logic™™* ] - 6.5 10 pF
) Do™~D4 V. =0V, Ta=25"C, - 10 125 pF
Input Capacitance 5 Cin f '="1 MHz — 25 5 pF
$2 — 45 70 pF
. Ag~As, RIW V,, =0V, Ta=25C, _ B
Qutput Capacitance VMA, BA Cout f ';1 MH2 12 pF

* Ta = 25°C, Vg = 5V
** All inputs except ¢, and ¢,
*** All inputs except ¢, , ¢, and D, ~D,

196 G HITACH!



HD6800,HD68A0O0O,HD68BOO

® AC CHARACTERISTICS (Vg =5V £ 5%, Vgg = 0V, Ta = -20~+75°C, unless otherwise noted.)
1. TIMING CHARACTERISTICS OF CLOCK PULSE ¢, and ¢»

Test HD6800 HDB8AD0 HD68B00 )
Item Symbol " - - - Unit
Condition min | typ max | min | typ max | min | typ | max
Frequency of Opeljation f 0.1 - 1.0 0.1 — 1.5 0.1 - 2.0 | MHz
Cycle Tirme teye Fig. 10 1.000 . — 10|0.666 | — 10/0.500| -~ 10 | us
Clock Pulse Width [ ¢, ¢;  [PWcin.PWewz| Fig. 10 400| — [4500 230 — |4,500] 180| - |4,500| ns
Rise and Fail Times | ¢, ¢, t,, 4 Fig. 10 - - 100 -] = 100 - = 100 | ns
Delay Time {Clock Internal) ty Fig. 10 0| — 4,500 0! — |4,500 0o/ — 4500 ns
Clock ‘"High*’ Level Time tuT Fig. 10 900 | - -~ | 600 - - 440} -— -1 ns
2. READ/WRITE CHARACTERISTICS
HDB6800 HD68AQ0 HD68B00
ltem Symbol c Tes.t' - - - Unit
ondition min | typ max | min | typ max | min | typ max
_ Fig. 11, o o - 3
Address Delay C=90pF | tap- Fig. 12 270 | 180 150 . n
Time C=30pF | t Fig. 11, 1 — 1 280" - - | 165 —| - | 135 ns
P AD2 Fig. 12 |
Data Setup Time (Read) tosk Fig. 11 100 | — - 60, - - 40| - — 1 ns
Peripheral‘ﬁead Access Time .
F - - I | _
taog = FH:E‘}E + tosr) tace ig. 11 530 360 250 | ns
Input Data Hold Time ty . Fig. 1 10 - - 0 — - 10, - — | ns
Output Data Hold Time ty Fig. 12 20| -~ - 20 - - 20| - — i ns
Address Hold Time Fig. 11,
{Address, R/W, VMA) tan Fig. 12 0 - - 10 - -] 10 - -
IEnable “High" Time for DBE ten Fig. 12 450 | — _ 1| 280 — _| 220 - — 1 ns
ewt L
Data Delay Time {Write) toow Fig. 12 - - 225 - - 200 - - 160 | ns
Data Bus Enable Down Time _ .
{During &, Up Time) t58E Fig. 12 150 | - - 120, — — 75 — — | ns
Data Bus Enable Delay Time togeD Fig. 12 300 - —| 260 | — —| 180 - — | ns
Data Bus Enable toBe .
Rise and Fall Times tDBE; Fig. 12 T 25 - T 25 - T 25| s
Processor Controf Setup Time tecs 200 | - — | 140 | - - 110 - -~ | ns
Processor Control tec
Rise and Fall Times tpc; T 100 B 100 T 100 | ns
Bus Available Delay Time {(BA)| tga - = 250 - - 165 - - 135 | ns
Three-State Delay Time trso - - 270 - - 270 - - 220 ns
5.0V
RL=2.4k C = 130pF for D, ~D,
= 90pF for A, ~A,,,RM, and VMA
Test Point = 30pF for BA
R=11kQ for D,~D,
c A = 16k2 for A, ~A,, R/Wand vMA
= 24k$2 for BA

C includes Stray Capacitance,
All diodes are 152074 B or equivalent.

Figure 1 Bus Timing Test Load

GO HITACHI 197



HD6800,HD68A00,HDE8BOO

The Last instruction Cycle

|

Halt Cycle

o, _/_ﬁ( Veg — 0.6V J

~t=

m

N

Vee — 0.6V
e\ /\ c
tecs
tpct e
20V
AT 0.8V
HALT
— tea
- ]
]
I
BA 2.4V
Figure 2 Timing of HALT and BA
Halt Instruction Cycle

®, / 3( Vee ~ 0.6V 7

o\

Cycle ]
™~

Ve - 0.6V\ /_

/S

tecs
tper et
TR 2.0V .
A
HALT 0.8V B
——
BA x 0.4V
Figure 3 Timing of HALT and BA
MPU Reset | MPU Restart Sequence
T
& / \ Vcc — 0.6V

2\

RES

/_

/_—1RVC? - 0.6V

/S

[=—1tpcs

VMA

taD

2.4V

_/

198

' Figure 4 RES and MPU Restart Sequence

G HITACHI



HD6800,HD6BAOO,HD68B0O0O

WAIT Cycle or
The Last Instruction Cycte | Interrupt Sequence

/N /TN /

tect .
2.0v
0.8V
{(When WAIT Cycle) T 'BA

e e e . e o ——

o
o

2
S

[P

BA L 0.4V

Figure 5 IRQ and NMI Interrupt Timing

The last execution cycle of
| WA instruction {#8) | WAIT Cycle

/T
A\ /T

BA

Figure 6 WAI Instruction and BA Timing

PWCH] {4.5 us max}

Vee - 0.6V Voo — 06V
04V \ /

I

tper o b tpCt
TsC sy, zdéavv
AT rso t1sp
~ 24V
AoAys / 04V

v 7 “ZAV
S ,
BA =24V
04Y V77774 |ndeterminate period

Figure 7 TSC Input and MPU QOutput

O HITACHI | 199



HD6800,HD68A00,HD68BO0

= MPU REGISTERS

The MPU provides several registers in Fig, 8, which is avail-
able for use by the programmer.

Each register is described below.
® Program Counter (PC)

The program counter is a two byte (16-bit) register that
points to the current program address.
® Stack Pointer (SP)

The stack pointer is a two byte register that contains the
address of the next available location in an external push-down/
pop-up stack. This stack is normally a random access Read/
Write memory that may have any location (address) that is con-
venient. In those applications that require storage of informa-
tion in the stack when power is lost, the stack must be non-
volatile.

® index Register {IX)

The index register is a two byte register that is used to store
data or a sixteen bit memory address for the Indexed mode of
memory addressing.
® Accumulators (ACCA, ACCB)

The MPU contains two 8-bit accumulators that are used to
hold operands and results from an arithmetic logic unit (ALU).

~
[}

ACCA

ACCB Accumulator B
0

Index Register

Accumulator A

-~
o

-
[3,)

5

L

PC Program Counter
15
[ sSP Stack Pointer
7 4
Condition Codes
T1H] VINJZIVIC} Register
i
L Carry (From Bit 7)
Overflow
Zero
‘ Negative
Interrupt Mask
Half Carry
(From Bit 3)
Figure 8 Programming Model of the Microprocessing

Unit

e Condition Code Register {CCR)

The condition code register indicates the results of an Arith-
metic Logic Unit operation: Negative (N), Zero (Z), Overflow
(V), Carry from bit 7 (C), and half carry from bit 3(H). These
bits of the Condition Code Register are used as testable condi-
tions for the conditional branch instructions. Bit 4 is the
interrupt mask bit (I). The unused bits of the Condition Code
Register (b6 and b7) are “1”. The detail block diagram of the
microprossing unit is shown in Fig. 9.

Address Bus  Address Bus
HEA, ~A, L) A= A,

Stack Pawnter (H)

N RG WALT  RES m
Interrypt Halt RAESET Address Bulter
Comrof Coniroi Cootrol
Vecior Address

5 [ T l Genaratar
3
2 [OCIIKe]
2 Temporary Register
<
=]
13 A Stach Pointer (L}
e
5 ALY Conrol
2
H

I Incrementer LHI

Branch Program Caunter {HE
...... Condinion
Comror fomy Jocrementer (Lt
<
5
o & Taming [
52 ondition Program Counter (L)
225 Generaror Cade Register
382 il
Eiﬂ Index Fegier (H
=3

(ndex Register {1}

fnstuction
Regisrer

Accomulator B

Accumylator A

Thiee State
Butter

Data Bus for tnstruction

Oata Bus
0, -0.

Figure 9 Internal Block Diagram of MPU

= MPU SIGNAL DESCRIPTION

Proper operations of the MPU requires that certain control
and timing signals (Fig. 9) be provided to accomplish specific
functions. The functions of pins are explained in this section.
® Clock {97, ¢2)

Two pins are used to provide the clock signals. A two-phase
non-overlapping clock is provided as shown in Fig. 10.

P

- N
Vine = Ve — 0.6V (min)) t PWepH2— L‘Tf
ViLc = Vgg +0.4V  {max.)
Vov = Vgs+ 086V

Figure 10 Clock Timing Waveform

® Address Bus (A;~A,;)

Sixteen pins are used for the address bus. The outputs are
three-state bus drivers capable of driving one standard TTL load
and 90pF. When the output is turned off, it is essentially an
open circuit. This permits the MPU to be used in DMA applica-
tions. Putting TSC in its high state forces the Address bus to go
into the three-state mode.
® Data Bus {Dy,~D,)

Eight pins are used for the data bus. It is bidirectional,
transferring data to and from the memory and peripheral
devices. It also has threestate output buffers capable of driving
one standard TTL load and 130pF. Data Bus is placed in the
three-state mode when DBE is “Low.”

200 GO HITACHI



HD6800,HD68A00,HD68B0O0O

|/ Start of Cycle

teye
® Vee —0.6v \ /
’ 0.4v A oav
[—— tr
—-\S Vee 0.6V
[ 0.4V
p—— TAD —f
24v = N
RIW H o
Addressm—
From \\
mpy 24V 5
24v AD
VMA 1 bty
tAD Tace tpsR—*
Data From
2.0v . m—
Memory or .
Peripherals o8y Data Valid ’&_'
m Indeterminate period
Figure 11 Read from Memory or Peripherals
/ Start of Cycle
teye
Vee 06V /
i 0.4v \ S 04av
fr— ‘tr

—]
"\ / \

R/W

4
«
0.4V N

—o e tAb

Address 2.4V
P
From MPU g4y | ‘ —

le——— T A ) e
2.4v
VMA
tEH
DBE X ¢, P
*—toBEr -t
2.4V | e
Data ‘@ Data Valid
From MPU 0.4V — -
[——tH W —=

m {ndeterminate period

Figure 12 Write to Memory or Peripherals

GO HITACHI 201



HD6800,HD68A00,HD68BOO

e Data Bus Enable (DBE)

This input is the three-state control signal for the MPU data
bus and will enable the bus drivers when in the “High” state; will
make the bus driver off when in the “Low” state. This input is
TTL compatible; however in normal operation, it would be
driven by ¢, clock. During an MPU read cycle, the data bus
drivers will be disabled internally. When it is desired that an-
other device control the data bus such as in Direct Memory
Access (DMA) applications, DBE should be held “Low.”

If additional data setup or hold time is required on an MPU
write, the DBE down time can be decreased as shown in Fig. 13
(DBE ¥ ¢,). The minimum down time for DBE is (HBE s
shown and must occur within ¢; up time. As for the charac-
teristical values in Fig. 12, refer to the table of electrical charac-
teristics.
® Bus Available {BA)

The BA signal will normally be in the “Low™ state. When
activated, it will go to the “High” state indicating that the
microprocessor has stopped and that the address bus is avail-
able. This will occur if the HALT line is in the “Low” state
or the processor is in the WAIT state as a result of the execution
of a WAIT instruction. At such time, all three-state output
drivers will go to their off state and other outputs to their
normally inactive level. The processor is removed from the
WAIT state by the occurrence of a maskable (mask bit I = 0) or
nonmaskable interrupt. This output is capable of driving one
standard TTL load and 30pF. If TSC is in the “High™ state, Bus
Available will be “Low”.

o Read/Write (R/W)

This TTL compatible output signals the peripherals and

memory devices whether the MPU is in a Read (“High”) or

Write (“Low”) state. The normal standby state of this signal is
Read (“High™). Three-State Control going *“High” will turn R/W
to the off (high impedance) state. Also, when the processor is
halted, it will be in the off state. This output is capable of
driving one standard TTL load and 90pF,

® Reset (RES)

The RES input is used to reset and start the MPU from a
power down condition resulting from a power failure or initial
start-up of the processor. This input can also be used to re-
initialize the machine at any time after start-up.

If a “High” level is detected in this input, this will signal the
MPU to begin the reset sequence. During the reset sequence, the
contents of the last two locations (FFFE. FFFF) in memory
will be loaded into the Program Counter to point to the begin-
ning of the reset routine. During the reset routine, the interrupt
mask bit is set and must be cleared under program control
before the MPU can be interrupted by TRQ. While RES is
“Low™ (assuming a minimum of 8 clock cycles have occured)
the MPU output signals will be in the following states; VMA =
“Low”, BA = “Low”, Data Bus = high impedance, R/W = “High”
{read state), and the Address Bus will contain the reset address
FFFE. Fig. 13 illustrates a power up sequence using the Reset
control line. After the power supply reaches 4.75V.a minimum
of eight clock cycles are required for the processor to stabilize
in preparation for restarting. During these eight cycles, VMA will
be in an indeterminate state so any devices that are enabled by
VMA which could accept a false write during this time (such as
a battery-backed RAM) must be disabled until VMA is forced
“Low” after eight cycles. RES can go “High” asynchronously
with the system clock any time after the eighth cycle.

n ’n+|1n42‘n+3‘n‘41n'5

voje ol slelrialel
S eipinipEpipEpip NSRS

Power on

Switch I 7 7
Power p— 5.25V 4 —i}
Supply — 4,75V .
—{—'Pcs
— e ) ol b 5(
RES p— tpcr
-z s g s S G G, S S
Bus. CEEE VEFFE FFEE FEFE FEEE NewPC
R/W WW "

BA 7

Restart Routine

i /

Restart Routine

ooz
W PR
D A T,

Address BitsO~7

72X VX X 2K
77

Restart Routine Instruction of

Address Bits 8~ 15 Address Bits O~7 Restart Routine

V7] = Indeterminate period
Figure 13 RES Timing

202 G HITACHI



The Reset control line may also be used to reinitialize the
MPU system at any time during its operation. This is accomp-
lished by pulsing RES “Low” for - the duration of a minimum of
three complete ¢, cycles. The RES pulse can be completely
asynchronous with the MPU system clock and will be recog-
nized during ¢, if setup time tpcg is met.
® |nterrupt Request {IRQ)

This level sensitive input requests that an interrupt sequence
be generated within the machine. The processor will wait until
it completes the current instruction that is being executed
before it recognizes the request. If the interrupt mask bit in the
Condition Code Register is not set, the machine will begin an
interrupt sequence. The Program Counter, Index Register,
Accumuiators, and Condition Code Register are stored away on
the stack,

Next the MPU will respond to the interrupt request by
setting the interrupt mask bit “1” so that no further inter-
rupts may occur. At the end of the cycle, a 16-bit address will
be loaded that points to a vectoring address which is located in
memory locations FFF8 and FFF9. An address loaded at these
locations causes the MPU to branch to an interrupt routine in
memory. Interrupt timing is shown in Fig. 14.

The HALT line must be in the “High” state for interrupts
to be serviced. Interrupts will be latched internally while HALT
is “Low”. The TRQ has a high impedance pullup device internal
to the chip; however a 3kQ2 external resistor to Vo should be
used for wire-OR and optimum control of interrupts.

HD6800,HD68A00,HD68BOO

® Non-Maskabie Interrupt (NMi) and Wait for Interrupt (WAI)

The MPU is capable of handling two types of interrupts:
maskable (TRQ) as described earlier, and non-maskable (NM1).
IRQ is maskable by the interrupt mask in the Condition Code
Register while NMI is not maskable. The handling of these inter-
rupts by the MPU is the same except that each has its own
vector address. The behavior of the MPU when interrupted is
shown in Fig. 14 which details the MPU response to an interrupt
while the MPU is executing the control program. The interrupt
shown could be either TRQ or NMI and can be asynchronous
with respect to ¢,. The interrupt is shown going “Low” at
time tpcs in cycle #0 which precedes the first cycle of an in-
struction (OP code fetch). This instruction is not executed but
instead the Program Counter (PC), Index Register (IX),
Accumulators (ACCX), and the Condition Code Register (CCR)
are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts.
The address of the interrupt service routine is then fetched from
FFFC, FFFD for an NMI interrupt and from FFF8, FFF9 for
an TRQ interrupt. Upon completion of the interrupt service
routine, the execution of RTI will pull the PC, IX, ACCX, and
CCR off of the stack; the Interrupt Mask bit is restored to its
condition prior to interrupts. Fig. 15 is a similar interrupt se-
quence, except in this case, a WAIT instruction has been ex-
ecuted in preparation for the interrupt. This technique speeds
up the MPU’s response to the interrupt because the stacking of

‘ Cycle | Cycle | Cycle | Cycie , Cycle | Cycte | Cycle | Cycle | Cycle | Cycte | Cycle | Cycle | Cycle | Cycle | Cycle
#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 1 #11 #12 | #13 | #14
Saisinipigipiplininiginigigligligh
- LUy
Address -
Bus D ) G G G G GEED D G GEED SN XC
or or New PC
ool PC PC SP(n} SP{n-1) SPin-2) SP(n-3) SP(n-4) SP(n-5) SPin-6) FFEG. FFFD. Address
NMi o \ Address Address
= b= tpcs Va
M
D G GED GE G G SIS GEND GEED G G GED G SR R ¢
Inst {x} PCO~PC? PC8~  IXO~IX7 X8~ ACCA ACCB CCR New PC8~PC1S New pCO~PCT First Inst of
ir PCI5 1X15 Address  Address  Interrupt Routine
R/W
\ /
VMA
Figure 14 Interrupt Timing
Cycel te|Cycle |Cycle|Cycle |Cycle |[Cygle | Cycle| Cycle . Cycle|Cycle|Cycle|Cycle |Cycle | Cycle
, :(;e C;cze 13 24 | #6 | =26 X7 gg| #9 l Wait Cycle #n |#n+1|#n+2]| =n+3|=zn+d|zn+6
 JUUUuUyyyUyuuUyUiuuuuUruy
« _[Uroururuuruuuysurusunuguru
Cycle l,'NOTE+)2 a Cyclé
+1 n +3  n+d #n+b
Address #1 2 3 4 5 3] 7 8 9 n In n n
B";— —Instruction= SPin] SP(n-1) $P(n-2) SPin-3) SP(n-4) SP(n-5) §Pin-6) f————=FFF8=FFF9= New PC
R/W i Address
VMA % :
g First Inst.
M / of Interrupt
1RO or F \ / Routine
ﬁg-lata N —wd |e-tpcg (200ns)
Bus v Al
~ 8~ ~ 1X8~ A AC New PC8~PC15 New PCO~PC?
8 ‘n’:'[l PCO~PC7 EEIS X0~ 1X15 ¢1CE'ACVCIQCE1(0:95 v Addrass Address
A

{NOTE) Midrange waveform indicates high impedance state.

Figure 15 WAI Instruction Timing

G rHiITacH

203



HD6800,HD68A00,HDE8BOO

the PC, IX, ACCX, and the CCR is already done.

While the MPU is waiting for the interrupt, Bus Available will
go “High” indicating the following states of the control lines:
VMA is “Low”, and the Address Bus, R/W and Data Bus are all
in the high impedance state. After the interrupt occurs, it is
serviced as previously described.

Table 1 Memory Map for Interrupt Vectors

Vector L.
MS s Description
FFFE FFFF Restart
FFFC FFFD Non-maskable Interrupt
FFFA FFFB Software Interrupt
FFF8 FFF9 Interrupt Request

Refer to Figure 18 for program flow for Interrupts.

® Three State Control (TSC)

When the Three State Control (TSC) line is ‘‘High” level, the
Address Bus and the R/W line are placed in a high impedance
State. VMA and BA are forced “Low” when TSC = “High” to
prevent false reads or writes on any device enabled by VMA.
It is necessary to delay program execution while TSC is held
“High™. This is done by insuring that no transitions of ¢, (or
¢,) occur during this period. (Logic levels of the clocks are
irrelevant so long as they do not change.)

Since the MPU is a dynamic device, the ¢; clock can be
stopped for a maximum time PWcy; without destroying data
within the MPU. TSC then can be used in a short Direct Me-
mory Access (DMA) application.

Fig. 16 shows the effect of TSC on the MPU. The Address
Bus and R/W line will reach the high impedance state at ttgp
(threestate delay), with VMA being forced “Low”. In this
example, the Data Bus is also in the high impedance state while
¢ is being held “Low”" since DBE=¢, . At this point in time, a
DMA transfer could occur on cycles #3 and #4. When TSC is
returned “Low,” the MPU address and R/W lines return to the
bus. Because it is too late in cycle #5 to access memory, this
cycle is dead and used for synchronization. Program execution
resumes in cycle #6.

® Valid Memory Address (VMA)

This output indicates to peripheral devices that there is a
valid address on the address bus. In normal operation, this signal
should be utilized for enabling peripheral interfaces such as the
PIA and ACIA. This signal is not three-state. One standard TTL
load and 90pF may be directly driven by this active “High”
signal.
® Halt (HALT)

When this input is in the “Low” state, all activity in the
machine will be halted. This input is level sensitive.

The HALT line provides an input to the MPU to allow con-
trol or program execution by an outside source. If HALT is
“High”, the MPU will execute the instructions; if it is “Low”,
the MPU will go to a halted or idle mode. A response signal,
Bus Available (BA) provides an indication of the current MPU
status. When BA is “Low”’, the MPU is in the process of execut-
ing the control program; if BA is “High”, the MPU has halted
and all internal activity has stopped. _

When BA is “High”, the Address Bus, Data Bus, and R/W line
will be in a high impedance state, effectively removing the
MPU from the system bus. VMA is forced “Low” so that the
floating system bus will not activate any device on the bus that
is enabled by VMA.

While the MPU is halted, all program activity is stopped, and
if either an NMI or IRQ interrupt occurs, it will be latched into
the MPU and acted on as soon as the MPU is taken out of the
halted mode. If a RES command occurs while the MPU is
halted, the following states occur; VMA = “Low”, BA = “Low™,
Data Bus = high impedance, RfW = “High” (read state), and
the Address Bus will contain address FFFE as long as RES is
“Low”. As soon as the RES line goes “High™, the MPU will
go to locations FFFE and FFFF for the address of the reset
routine. )

Fig. 18 shows the timing relationships involved when halting
the MPU. The instruction illustrated is a one byte, 2 cycle in-
struction such as CLRA. When HALT goes “Low”, the MPU
will halt after completing execution of the current instruction.
The transition of HALT must occur tpcs before the trailing edge
of ¢, of the last cycle of an instruction (point A of Fig. 18).
HALT must not go “Low” any time later than the minimum
tpcs specified.

|cmlei#2]#3|#4|#5|#6|#7|#8|#9]
L4
'____-PWCH1max___....__.|
MPU¢,|I Illllllll
Addr —»  j—tTSD trsp—e] |=—
il G XXX oC
RW X X
wma ]
e — X OO X X
o 085 [ pu il g B g B I
TSC

Figure 16 TSC Control Timing

204 GO HITACHI



HD6800,HDB8A00,HDE8BOO

Y — Set NMIF
IRQ
Ignored
N
Set IRQF EXECUTION
END N
?
Y
EXECUTION HATT y FATT
END
N <Cycle>
Pseudo-WAI
Instruction #1~2
generation
<Cycle> l
=12 atnietion Stack 3~9
generation PC, IX, A, B, CCR
#3~9 Stack
PC.IX. A B CCR Vector Address #10
generation
Y
(FFFC) Fetch
IM=1 =11
N NMIF
Reset { | cnr
=10 Vector Address
generation 1
I (FFFD) Fetch #12
(FFF8) Fetch
=11 IM=1
NMIF
Reset (IRQF
=12 (FFFQ) Fetch
Y
JUMP
FFFC/D #13
JumPpP
#13 FFF8/9

Figure 17 MPU interrupt Flow Chart

O HITACHI 205



HD6800,HD68A00,HD68BOO

Instruction
Fetch The Last

Instruction
Cycie

¢, l ] ;"’CSE I l l l_l
9y | | I | | | ;

e tPct

Instruction | Instruction

Fetch Execution

< YT

FALT R | .
BA - /l-— A,
{NQTE 1)
VMA N
RW 77X ) 7,4 /%(NOTE 2,
£ xecute

Address XX i
Cata XX 722 "

Zacar X .

Example: M=1000,,, X=CLRA (OP 4F)

210, R 0, S e
M+1=1001,,, Y=CLRBI(QP 5F)

{(NOTE) 1. Obligue lines indicate indeterminate range of data.
2. Midrange waveform indicates high impedance state.

Figure 18 HALT and Single instruction Execution for System Dubug

Table 2 Qperation States of MPU and Signal Outputs (Except the Execution of Instruction)

Signals Halt state Reset state :e"’slelta;gte WAI state TSC state
BA HY "L i “HY L
VMA L L “L" L L
R/W T “H “H T T
Ag ~ Ags “T (FFFE) 6 (FFFE) “T T
Do ~ D4 “T T T T —

“T" indicates high impedance state.

The fetch of the OP code by the MPU is the first cycle of the
instruction. If HALT had not been “Low™ at Point A but went
“Low” during ¢, of the cycle, the MPU would have halted after
completion of the following instruciton. BA will go “High” by
time tga (bus available delay time) after the last instruction
cycle. At this point in time, VMA is “Low” and R/W, Address
Bus, and the Data Bus are in the high impedance state.

To debug programs it is advantageous to step through pro-
grams instruction by instruction. To do this, HALT must be
brought “High” for one MPU cycle and then returned “Low” as
shown at point B of Fig. 18. Again, the transitions of HALT
must occur tpcg before the trailing edge of ¢,. BA will go
“Low™ at tga after the leading edge of the next ¢, ,indicating
that the Address Bus, Data Bus, VMA and R/W lines are back
on the bus. A single byte, 2 cycle instruction such as LSR is
used for this example also. During the first cycle, the instruction
Y is fetched from address M+1. BA returns “High” at tg, on
the last cycle of the instruction indicating the MPU is off the
bus, if instruction Y had been three cycles, the width of the BA
“Low” time would have been increased by one cycle.

Table 2 shows the relation between the state of MPU and
signal outputs.

= MPU INSTRUCTION SET

This Section will provide a brief introduction and discuss
their use in developing HD6800 MPU control programs. The
HD6800 MPU has a set of 72 different executable source
instructions. Included are binary and decimal arithmetic, logical,
shift, rotate, load, store, conditional or unconditional branch,
interrupt and stack manipulation instructions.

Each of the 72 executable instructions of the source language
assembles into 1 to 3 bytes of machine code. The number of
bytes depends on the particular instruction and on the address-
ing mode. (The addressing modes which are available for use
with the various executive instructions are discussed later.)

The coding of the first (or only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the addressing mode. The hexadecimal equivalents of the
binary codes, which result from the translation of the 72 in-
structions in all valid modes of addressing, are shown in Table 3.
There are 197 valid machine codes, 59 of the 256 possible codes
being unassigned.

When an instruction translates into two or three bytes of
code, the second byte, or second and third bytes contain(s) an
operand, an address, or information from which an address is
obtained during execution.

206 G HITACHI



Microprocessor instructions are often devided into three
general classifications; (1) memory reference, so called because
they operate on specific memory locations; (2) operating in-
structions that function without needing a memory reference;
(3) I/O instructions for transferring data between the micro-
processor and peripheral devices.

In many instances, the HD6800 MPU performs the same
operation on both its internal accumulators and the external

HD6800,HD68A00,HD68BO0O

memory locations. In addition, the HD6800 MPU allow the
MPU to treat peripheral devices exactly like other memory
locations, hence, no I/O instructions as such are required. Be-
cause of these features, other classifications are more suitable
for introducing the HD6800's instruction set: (1) Accumu-
lator and memory operations; (2) Program control operations;
(3) Condition Code Register operations.

For Accumulator and Memory Operations, refer to Table 4.

Table 3 Hexadecimal Values of Machine Codes

Lse | [ I
{ E
Mss 0 1 2 3 4 5 6 7 8 9 A B c | o) F
NOP ! TAP TPA INX DEX CLV |SEV cLC  SEC cLi SEI
° . ame) |7 * } ‘ * (IMP)  (IMP)  (IMP)  [(IMP)  |(IMP} | (IMP} | (IMP} | (IMP} ((iMP) LM
, SBA  |CBA | ! TAB | TBA DAA | ' ABA ‘
(A, B) [(A,B) * " * * (IMP} | (IMP) * (1mp) * (IMP) * * ot
) BRA BHI BLS BCC BCS BNE | BEO 1BVC BVS BPL BM! BGE BLT BGT  BLE
(REL) . (REL) |(REL) |(REL) [{REL)} |[(REL) I(REL) (REL) (REL) |(REL) |(REL) .(REL) (REL) (REL) (REL)
3 TSX INS PUL PUL DES TXS PSH | PSH ‘RTS ATI | WAL swi
MP)  [(IMP)  1{A) (8) (IMP) | (IMP) | (A) (8) - (1MP) ) (IMP) ) ) (IMP)  (IMP)
A NEG H . . [ole] V] LSR ROR ASR ASL ROL DEC . INC TST . CLR
(a) (A} (Al ) (a) (A) (A) (A) (a) 1a) (a)
5 NEG . coM | LsR . ROR |ASR ASL ROL  |DEC . INC TST . CLR
(8) y (B) (8) (B} (B) (8) (8) (8) (8 (8) (8
s NEG . COM  |LSR ROR |ASR AasL  |moL  |DEC . INC TST JMP CLR
(IND) ) (IND} | (IND) ’ (OND) | (IND} [(IND) (IND) [(IND) (IND)  {UND)  [(ND)  |(IND)
; NEG COM | LSR ROR | ASR ASL ROL  DEC INC TST  JMP CLR
(EXT) - * EXT) | (EXT) " UEXT) [(EXT) [(EXT) [(EXT) (EXT) ) (EXT) [(EXT) {(EXT) (EXT)
sus CMP | |SBC AND ,, [BIT LDA EOR ,,,|ADC ,,,ORA ,,,|ADD ,,, CPX BSR LDS
. A A A -
8 ammEA A A ™ ot o™ ™ ™ ™ ™ [ i | ReL | vy
sus CMP ,.|SBC AND .| BIT LDA ,,, STA EOR ,,,|ADC ,,, ORA ,,.|ADD ,,,|CPX LDS sTS
A . i .
° o™ or ™ or)'Y o™ eim o™ o™ er Y o™ or™ or* or ' {DIR)  {(DIR)
T
sus cmP . .lsBC AND ,,./BIT LDA ,,,ISTA EOR ,,,|ADC ,,, ORA ,,|ADD ,,,/CPX JSR LDS STS
A A A A
A N0 inoy' A o ano ™ ano) A oy (IND)(A) unor™| oy );(mm( Tano™ aney™[tinoy - [(inDr (1D
suB CMP . .'SBC AND ,,|BIT LDA ,,\|STA EOR ,,,|ADC ,,,/ORA ,,/|ADD  ,,iCPX JSR LDS sTS
. A
8 Ext ™ exri ™ ex® exn™ e A EXT)(A) (€ Exti ™ x| @xr ™ exti Exn M liExn  [ExT |(ExT)
suB CMP . [SBC AND .. |BIT [LbA EOR ,,,/ADC ,-,/ORA . ADD LDX
¢ am® {omwn™® [ammn®} avn® L ® | ammt® amm® omm® [ aam®!| ¢ {IMM} *
suB cMP . |SBC AND o, iBIT LDA g, STA EOR ,q,|ADC o, ORA o,|ADD LDX (qy|STX
o (mm(a) (mmm (mmm * (oum‘m (om)m (DIR)(B) (DIR)(B) (DlR)(B) u:un)(a) (Dlmm (mm‘s) ¥ ¢ (DIR)(B) (DIRI(B)
SuUB CMP SBC AND BIT LDA STA EOR ADC ORA ADD LDX STX
E ano® junor® [unon® | ano)® L inor® [ o ® | ano) ® 1oy ® (inp)® (IND)‘B anoy B * {IND) |(IND)
suB CMP . /SBC AND o, |BIT LDA ., |STA EOR ,o,|ADC g, |ORA o, |ADD LDX  IsTX
F Exti® (EXT)(B’l(EXT)(B) ° Ex®ext® [Exti® e xt® | e xt® ext®| ex® | exr® | ' (EXT)  [(EXT)
DIR = Direct Addressing Mode IND = Index Addressing Mode A = Accumulator A
EXT = Extended Addressing Mode IMP = Implied Addressing Mode B = Accumulator B
IMM= Immediate Addressing Mode REL = Relative Addressing Mode
G HITACHI 207



HD6800,HD68A00,HD68BOO

208

Table 4 Accumulator and Memory Operations

}_‘ Addressing Modes Cond. Code Reg.
Operation Mnemonic, IMMED | DIRECT | INDEX | EXTND | IMPLIED Amh?;’:('fc"’g’pmﬁon s[afa[2]1]0
OP~7 | OP~% | OP~# | OP~w | OP~=# RNENE
Add ADDA [8B [2[2|98 (32 |AB 5‘2}58 4[3 A+M=— A tlelslsitit
ADDB |CB|2|2|DB|32|€EB|5|2|FB|4] B+M~B s;-}:zz:
Add Acmitrs ABA R 18|2/1|A+B—-A tiejtit|ti
Add with Carry ADCA |89 |2(2(99 3|2 A9|5|2,8914|3 A+M+C—A tie tititlt
ADCB {C9 21{2!D9|3|2]|€E9 5‘2[F9‘43 . ' B+M+C—B 1ottt
And ANDA |84 (2]2|94 |3!2]A4 5/2{B4a |4 3! [ [A«M=A o o1l 1R e
ANDB |C4 (2|2 D4 3|2[E4|5.2,F4|4]|3 | [B+M=>8 ‘e et 1R =
Bit Test BITA 185:2/2,95:3/2/A5 5,2 854|3 AeM le ¢ ti1 R e
BITB |C5[2/2 D53 2(€E5)5,2 F5i4|3 [BeM . t/4IR e
Clear CLR ! j6F 1712 7F[‘6 3 100—M e R|S|RR
CLRA ’ ! 4F | 2,100~ A ‘e RiS|R' R
CLA8 1 ‘ ; SF 2' 1 00— B ’ R|{S|R R
Compare CMPA (81,2291 3 21A152191"4 3. flA-m . tleyeis
CMPB c1’220132|51 5 2|F11413: |B-—M ‘. ERE NI
Compare Acmitrs CBA ! i ! | 11|2/1|A-B e ettt
Complement, 1's coM |63 7 2 73,63 MM \- \3 1R S
COMA w [ I R [43 2{1 A~A eje|1 1|R'S
coMmB I . | 53|2/1/B~8 |o ejt 1 RS
Complement, 2's NEG ‘ | \60‘7i2~70:6‘3 ' 00-M=M ool
(Negate) NEGA | l | L 40 .2 1/00-A—A EIRIEaE:
NEGB ! [ Lo 50 | 2 1}00—8»3 EIRIaELt
Decimal Adjust, A DAA \ - i 18| 2|1, Converts Binary Add of BCD ' e } . tit
i | ‘ ‘ ‘ | Characters into BCD Format | !
Decrement DEC i BA 7!2‘7A 6!3 IM—1-M |ei@it tla e
DECA IR 4A12 1| A—1>A \-hc‘lz\tq:-
DECB ‘ ! i sa|2{1lB-1-8 ioleltit]s o
Exclusive OR EORA /88 (2]2:98 3|2 A8!512‘BB‘4 3 ABDM—A o]aizii R e
EORB CB{2|2,D8 3|2 E8[5|2 Falxaa B@M-B ".‘1‘“‘
Increment INC |- i 6C 7“2 7C{6,;3 M+1-M fe e, 11 5 e
INCA | i 4C 2 1 A+1-A je et 115 .
INCB ! | 5C[2 1/8+1—-8 ‘-03\:‘5-
Load Acmitr LDAA |86 22|96 3|2 A6 5 286 4|3 ‘ M= A leie tI1|R o
LDAB |C6|2|2{D6.3|2|E6 5‘2 F6|4'3 1l M-8 e o t 1t R|e
Or, Inclusive ORAA |8A|2.2|9A 3|2 /AA'5/2|BA 4|3 i A+M-aA {e sltitiR|e
ORAB |CA|2|2|DA|3i2 EA!5 2|Fa 4|3 'B+M-B [eie t|tRle
Push Data PSHA | ‘ 364 1/ A—Msp,SP—1-5P [eie’sjeie e
PSHB i 3714 1) B->Msp,SP—1-5P e -iofo ole
Pull Data PULA | | 324 1/ SP+7--SP Msp—A el oo
PULB | asiail;spuasP,Msp»B (el IR
Rotate Left ROL 69,7 2,79(6/3 LM o‘o‘zltls‘t
ROLA i a9 2‘1AL Co~ o) IR AR
ROLB i 59 2'1 8B C b7 « b0 "\"i’l"‘t
Rotate Right ROR 66 712(76:63 M ‘ele it
| RORA 4621 A} vy .‘.‘:11‘6 !
RORB | 56|2(1 8 C b7 = b0 fejert o tlElt
Shift Left, Arithmetic | ASL 68 7|2|78,6|3 Mt e -iz IR
ASLA } 48121 A o -— IR ESEAE!
AsLB | s8|2 1/8) cb7 b0 leletaiilaly
Shift Right, Arithmetic ASR ! 67(712.77 6|3 Y . teje|1it]6lt
ASRA 47‘2‘1;\% WOomm-o0  lejeit|ti6
ASRB 57:2;1!8 b7 b0 C oo 11 61
Shift Right, Logic LSR 647|274 6|3 M) ejeiR|1 51
LSRA { i 4 |2/1la> iD=+ 0 e e R|[1i6|1
LSRB | i s4/2{1{B) b7 b0 C e o|R|1|6]1
Store Acmitr STAA 97 (42 |A7,6,2|B7|5|3 A-M e e|1[t|R]|e
STAB D7|4|2|E7|6 2|F7|5|3 B—M eje|t/t|R|e
Subtract SUBA |80 |2(2/90 [3|2|A05/2|B0|4!|3 A-M-A e|oltit|s]t
SUBB | CO |2 2|/DO|3[2|EO0|65!2/F0| 43 B-M~B eloltit|t]t
Subtract Acmitrs SBA 10]2{1|A-B=A eleltit|t)t
Subtr with Carry SBCA |82 (2(2(92 3|2|A2(5[2{B2|4]3 A-M-C—A o|le ||t
SBCB [C2|2(2|D2|3|2{E2|5|2|F2| 4|3 B-M-C—+B eleit |||t
Transfer Acmitrs TAB 16 | 2|11 A—~B eje |t |t!R|e
TBA ! 17 2{1B~A eje/t|tiRe
Test Zero or Minus TST 6D[712/7D0: 63 M - 00 ele|t ¢t R|R
TSTA : 4ap |21 A-00 efelt|t|RIR
TSTB | §D|2|1|B—00 e|o/t|t|R|R
LEGEND: CONDITION CODE SYMBOLS:
OP Operation Code (Hexadecimal) +  Boolean Inclusive OR H Half<carry from bit 3 R Reset Always
~  Number of MPU Cycles @  Boolean Exclusive OR | Interrupt mask S Set Always
#  Number of Program Bytes M Complement of M N Negative (sign bit) $ Test and set if true, cleared otherwise
+  Arithmetic Plus - Transfer into Z Zero (byte) o Not Affected
- Arithmetic Minus 0 Bit = Zero V Overflow, 2's complement
. Boolean AND 00 Byte=Zero C Carry from bit 7

Contents of memory location
painted to be Stack Pointsr

(Note) Accumulator addressing mode instructions are included in the column for IMPLIED addressing.

CONDITION CODE REGISTER NOTES:
(Bit set if test is true and cleared otherwise)

(Bit V)
(Bit C)
(Bit C)

Test:
Test:
Test:

8it V)
(8it V)
{Bit V)

Test:
Test:
Test:

0O® 8o

Result = 100000007
Result # 000000007
Decimal value of most significant BCD Character greater than nine?
(Not cleared if previously set.)

Operand = 10000000 prior to execution?

Operand = 01111111 prior to execution?

Sat equal to result of NGC after shift has occurred.

@ HITACHI



a1 PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two cate-
gories: (1) Index Register/Stack Pointer instructions: (2) Jump
and Branch of operations.
® Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU’s Index
Register and Stack Pointer are summarized in Table 5. Decre-
ment (DEX, DES), increment (INX, INS), load (LDX, LDS),
and store (STX, STS) instructions are provided for both. The
Compare instruction, CPX, can be used to compare the Index
Register to a 16-bit value and update the Condition Code
Register accordingly.

The TSX instruction causes the Index Register to be loaded
with the address of the last data byte put onto the “stack”.
The TXS instruction loads the Stack Pointer with a value equal
to one less than the current contents of the Index Register. This
causes the next byte to be pulled from the “stack™ to come
from the location indicated by the Index Register. The utility of
these two instructions can be clarified by describing the *‘stack”
concept relative to the HMCS 6800 system.

The “stack™ can be thought of as a sequential list of data
stored in the MPU’s read/write memory. The Stack Pointer
contains a 16-bit memory address that is used to access the list
from one end on a last-dn-first-out (LIFO) basis in contrast to
the random access mode used by the MPU’s other addressing
modes.

The HD6800 MPU instruction set and interrupt structure
allow extensive use of the stack concept for efficient handling
of data movement, subroutines and interrupts. The instructions
can be used to establish one or more “stacks” anywhere in read/
write memory. Stack length is limited only by the amount of
memory that is made available.

Operation of the Stack Pointer with the Push and Pull in-
structions is illustrated in Figs. 19 and 20. The Push instruction
(PSHA) causes the contents of the indicated accumulator (A in

HD6800,HD68A00,HDG8BOO

this example) to be stored in memory at the location indicated
by the Stack Pointer. The Stack Pointer is automatically de-
cremented by one following the storage operation and is ““point-
ing” to the next 2inpty stack location.

The Pull instruction (PULA or PULB) causes the last byte
stacked to be loaded into the appropriate accumulator. The
Stack Pointer is automatically incremented by one just prior to
the data transfer so that it will point to the last byte stacked
rather than the next empty location. Note that the PULL
instruction does not “remove” the data from memory; in the
example, 1A is still in location (m+1) following execution of
PULA. A subsequent PUSH instruction would overwrite than
location with the new “pushed” data.

Execution of the Branch te Subroutine (BSR) and Jump to
Subroutine (JSR) instructions cause a return address to be
save on the stack as shown in Figs. 21 through 23. The stack is
decremented after each byte of the return address is pushed
onto the stack. For both of the these instructions, the return
address is the memory location following the bytes of code that
correspond to the BSR and JSR instruction. The code required
for BSR or JSR may be either two or three bytes, depending on
whether the JSR is in the indexed (two bytes) or the extended
(three bytes) addressing mode. Before it is stacked, the Program
Counter is automatically incremented the correct number of
times to be pointing at the location of the next instruction. The
Return from Subroutine instruction, RTS, causes the return
address to be retrieved and loaded into the Program Counter as
shown in Fig. 24.

There are several operations that cause the status of the MPU
to be saved on the stack. The Software Interrupt (SWI) and Wait
for Interrupt (WAI) instructions as well as the maskable (IRQ)
and non-maskable (NMI) hardware interrupts all cause the
MPU’s internal registers (except for the Stack Pointer itself) to
be stacked as shown in Fig. 25. MPU status is restored by the
Return from interrupt, RTI, as shown in Fig. 26.

Table 5 Index Register and Stack Pointer Instructions

[ Addressing Modes \L Cond. Code Reg.
Operation ' Mnemonic| IMMED | DIRECT | INDEX | EXTND | IMPLIED Amhm’;"ig'gi’:/raﬁon 's|al3]2[1]0
[OP |~ # OP|~|#|OP |~ #|OP|~|4lOP|~|# Hil|nN vic
Compare Index Reg CPX 8C |3 9C 4|2 |[AC |6 BCi&, 3, (X — (M}, (X ) — (M+1) oje D 1@ e
Decrement Index Reg DEX (09| 4j1 | X=1-X% elole|tleie
Decrement Stack Pntr DES 341411:8P—-1->85P lelele el ‘o
increment Index Reg INX 08 | 4]1[X+1—-X ‘alele t|ele
Increment Stack Pntr INS 31 [4(1|SP+1-~> SP e|lolelo|ee
Load Index Reg LDX CE{3/3|DE(4!2 |EE|6|2|FE|5|3 M- Xy, (M+1) =X ele @t R ®
Load Stack Pntr LDS 8E | 3|3 |9E {4 |2 |AE|G6|2|BE|513 M- 8Py, (M+1) > SP e o @ LR
Store Index Reg STX DF| 5|2 EF |7|2|FF|6|3 Xy ~+M X+ (M+1) e e |@t|R|e
Store Stack Pntr STS 9F |5 |2 AF 7|2 |BF |63 SPy —~ M, 5P > (M+1) oo |tIR e
Index Reg — Stack Pntr TXS 3% 41| X—-1~-8P e oo 0|ee
Stack Pntr = Index Reg TSX 36 |41 |SP+1—-X ¢ o/ eie|a|e
@ (Bit N} Test: Sign bit of most significant {MS) byte of result = 17
@ {BitV) Test: 2's complement overflow from subtraction of ms bytes?
@ (Bit N) Test: Result less than zero? (Bit 15 = 1)
]
O HITACHI 209



HD6800,HD68BAOO,H

D68B0O0

MPU

ACCA

i

m-2

m-1

SP —————=m

m+1
Previously
Stacked m+2
Data
m+3

TF

63

FD

=

— |

PSHA

Next Instr.

(a} Before PSHA

Data Bus

MPU

ACCA

m+1
Previously
Stacked m+2
Data
m+3

PC———=

/

F3

7F

63

———
__/1

PSHA

Next Instr.

(b) After PSHA

Figure 19 Stack Operation (Push Instruction}

MPU

]

ACCA

(—

1A

3C

m-2

m-1
SP——=m

m+1

Previously
Stacked m+2
Data

m+3

PC——=

210

DS

EC

e
/

PULA

Next Instr.

{a) Before PULA

MPU

ACCA

SP— m+1

m+2
Previously
Stacked m+3
Data

3C

[o]4]

/—

PULA

Next Instr.

{b) After PULA

Figure 20 Stack Operation (Pull Instruction)

@ HITACHI

T —




n+1

n+2

PC—=({n+2) tK

Figure 21 Program Flow for BSR

m-2
m=-1
SP———m
m+1 7E
7A
f
f
PC——=n BSR
n+1 +K* = Offset
n+2 Next Main Instr,
*K = Signed 7-Bit Value
{a} Before Execution
— ]
m-2
m-1
SPp~——=m
m+1 7E
m+2 TA
7D
f
PC———=n JSR = BD
n+1 | Sy = Subr. Addr.
n+2 | S, = Subr. Addr.
n+3 | Next Main Instr,
—_/_—

{a) Before Execution

m-3
SP———=-m-2

m-1

m+1

m+2

n+t

n+2

n+3

PC

{S formed from
S and )

- ]

(n+2)H

{n+2)L

7E

f

BSR

+K* = Offset

Next Main Instr.

—
f

15t Subr. Instr.

f

(b} After Execution

{n+3)H

{n+31L

7E

7A

e
/—

JSR

Sy = Subr. Addr.

Sp = Subr. Addr.

Next Main Instr.

ﬁ‘

1st Subr. Instr.

(b) After Execution

Figure 22 Program Flow for JSR (Extended)

G HITACHI

HD6800,HD68A00,HD68B00O

211



HD6800,HD68A00,HD68BOO

SP—em

pC——=n

SP—= m-2

m~1

n+1
n+2

n+3

PC— =S5,

212

T

m-1

m+1 7E

7A

/_—_-
— —

JSR = AD

n+1 K* = Offset

n+2 Next Main Instr,

(a) Before Execution

L

*K = 8-Bit Unsigned Value

SP—=m-=2

m-~1

n+1

n+2

PC—-X** + K

—

(n+2)H

{n+2)L
7E

7A
L —

e
JSR = AD

K™= Offset

Next Main Instr,

/

1st Subr. Instr.

f

**Contents of Index Register

(b} After Execution

Figure 23 Program Flow for JSR (Indexed)

]

(n+3)H

{n+31L

7E

7A

\_//,——-——
f

JSR = BD

Sy = Subr. Addr.

S$¢ = Subr. Addr.

Next Main Instr,

L
 —

Last Subr. tnstr.

RTS

L/,—

(a) Before Execution

__/—""!
m-2
m-1 {n+3)H
SP———=m (n+3)L
m+1 7€
R

n+1 Sy = Subr. Addr.
n+2 S| = Subr. Addr.

pPC-——=n+3

Sn RTS

n JSR = BD

—

Next Main Instr.

]
—

Last Subr. Instr,

/

(b} After Execution

Figure 24 Program Flow for RTS

G HITACHI



HD6800,HD68A00,HD68B0OO

Wait for Hardware Interrupt or
Software interrupt Interrupt Non-Maskable Interrupt (NMI}
Main Program Main Program Main Program
3F = SwWI n|3E = WAI
Next Main Instr ) n+1 [ Next Main Instr. n | Last Prog. Byte
\ / AN J - J
Y
Yes Mask Set?
CCR 4)
Continue Main Prog.
n+1 [Next Main Instr,
< A
Stack
SP — m-7
m-8 | Condition Code
Stack MPU :> m-5
Register Contents Acmitr. B
m-41 Acmitr. A
m-31 Index Register (X}
m-2 | index Register (X, )
m-1 | PC{n+1)H
m PC(n+1)L
swi HDWR WA NMI ‘ Restart }
INT >
Int.
Mask Set? Wait Loop o
(CCR 4
FFFA FFF8 FFFC FFFE
FFFB p FFFO FEFD w FFFF

!

Interrupt Memory Assignment
Set Interrupt
FFF8 | Hardware Int. MS Mask (CCR 4)
FFFI | Hardware Int. LS First |
fF irst Instr,
FA | Software MS Addr. Formed
FFFB | Software LS ‘:> By Fetching L%ad Imelrrup\
2-Bytes From ector Into
FFFC | Non-Maskable Int. | MS Per. Mem., Program Counter
FFFD | Non-Maskable int. | LS Assign.
FFFE | Restart MS
FEFE | Restart LS
interrupt Program
1st Interrupt !nstr.
(NOTE) MS = Most Significant Address Byte
LS = Least Significant Address Byte

Figure 26 Program Flow for interrupts

O HITACHI 213



HD6800,HD6BAOO,HD6E8BOO

/

m-6 CCR
m-5 ACCB
m-4 ACCA
m-3 X {Index Reg)

m-2 XL (Index Reg)

m-1 PC{n+t)H

m PC{n+1)L

e ——
/

n+1 Next Main Instr.

f
f

Last inter, Instr.

PC—= Sn RTI

/

{a) Before Execution

/
m-7
m=-6 CCR
m-56 ACCB
m-4 ACCA
m=3 Xy
m-2 XL
m=1 PCH
SP———m PCL
7E
PC—=n+1 Next Main Instr,
/
ﬁ
Last Inter. Inst.
Sn RT!
._/’—'

(b} After Execution

Figure 26 Program Flow for RTI

& Jump and Branch Operation

The Jump and Branch instructions are summarized in Table
6. These instructions are used to control the transfer of opera-
tion from one point to another in the control program.

The No Operation instruction, NOP, while included here,
is a jump operation in a very limited sense. Its only effect is to
increment the Program Counter by one. It is useful during
program development as a “stand4n” for some other instruc-
tion that is to be determined during debug. It is also used for
equalizing the execution time through alternate paths in a con-
trol program,

Execution of the Jump Instruction, JMP, and Branch Always,
BRA, affects program flow as shown in Fig. 27. When the MPU
encounters the Jump (Index) instruction, it adds the offset to
the value in the Index Register and uses the result as the address
of the next instruction to be executed. In the extended address-
ing mode, the address of the next instruction to be executed is
fetched from the two locations immediately following the JMP
instruction. The Branch Always (BRA) instruction is similar to
the JMP (extended) instruction except that the relative address-
ing mode applies and the branch is limited to the range within
—125 or +127 bytes of the branch instruction itself. The opcode
for the BRA instruction requires one less byte than JMP (ex-
tended) but takes one more cycle to execute.

The effect on program flow for the Jump to Subroutine
(JSR) and Branch to Subroutine (BSR) is shown in Figs. 21
through 23. Note that the Program Counter is properly in-

cremented to be pointing at the correct return address before
it is stacked. Operation of the Branch to Subroutine and Jump
to Subroutine (extended) instruction is similar except for the
range. The BSR instruction requires less opcode than JSR (2
bytes versus 3 bytes) and also executes one cycle faster than
JSR. The Return from Subroutine, RTS, is used at the end of
a subroutine to return to the main program as indicated in Fig.
24,

The effect of executing the Software Interrupt, SWI, and the
Wait for Interrupt, WAI, and their relationship to the hardware
interrupts is shown in Fig. 25. SWI causes the MPU contents to
be stacked and then fetches the starting address of the interrupt
routine from the memory locations that respond to the ad-
dresses FFFA and FFFB. Note that as in the case of the sub-
routine instructions, the Program Counter is incremented to
point at the correct return address before being stacked. The
Return from Interrupt instruction, RTI, (Fig. 26) is used at the
end of an interrupt routine to restore control to the main
program. The SWI instruction is useful for inserting break points
in the control program, that is, it can be used to stop operation
and put the MPU registers in memory where they can be ex-
amined. The WAI instruction is used to decrease the time
required to service a hardware interrupt; it stacks the MPU
contents and then waits for the interrupt to occur, effectively
removing the stacking time from a hardware interrupt sequence.

214 @ HITACHI



Table 6 JUMP/BRANCH Instruction

HD6800,HD68A0O,HD68

BOO

Addressing Modes ’ Cond. Code Reg.
Operation Mnemonic | RELATIVE| INDEX | EXTND | IMPLIED Branch Test s[alzlz]1]0
op|~|&|op[~]# jop[~ s lor]~Tx Ao InTzlv]c
Branch Always BRA 20 4|2, i  None ‘e ! e o e oo
Branch If Carry Clear | BCC 24|42 P i | c=0 RN leieie
Branch If Carry Set BCS 26|42 i i I i C=1 . ! o | i . | oo
Branch If = Zero BEQ 27 42 | ; Coz=1 eialealaiele
Branch 1f 2 Zero BGE 2C|4: 2. | i IN®V=0 laio o . 0.0
Branch If > Zero BGT :26l4'2 | i lzZ+iN@®VI=0 e e /e slele
Branch I Higher BHI 2)sa 2 | ! b L c+z=0 e'elelele e
Branch If £ Zero BLE 2Fl 42 i Lo LZ+IN@V)=1 feie sie e e
Branch If Lower Or Same BLS 2314;21 : P ! bc+z= ‘o:o .3.5.‘.
Branch If < Zero BLT 204 2 P . * FNBV= ¢ s s 00, 0
Branch 1f Minus ‘ BMI 23‘412‘ | \ ) {‘ ; } P N=1 le:s oio‘oio
Branch If Not Equal Zero | BNE 2642, ;b | ! i 2=0 leie e e oje
Branch If Overfiow Clear | BVC 28, 4,2 | ] . i v=0 |o oo o aje
Branch If Overflow Set BVS 2(4j2 ‘ Cve1 e efeeiale
Branch 1f Plus BPL 28] 4 2 ‘ : N=0 oo o 0 o
Branch To Subroutine | BSR 8D; 82 D | Co e oo o s]e
Jump L JmP 6E |4 |2 ;7€ 3.3 ‘ o eje ole o o
Jump To Subroutine JSR AD!8 |2 {BD|9 |3 Lo l oo loie e } .
No Operation NOP i ; ‘ ! 012 11 Advances Prog Cntr Only | & @ | @ ‘o ‘el e

Return From Interrupt RTI \ | 3810 1 ‘ : T — J‘
Return From Subroutine RTS ‘ | 39,5 1 ! soleo oo e]e
Software Interrupt Swi : 3F |12 |1 eiS s | eleie
Wait for Interrupt WAI ‘ ‘ i 3E1 9 l1 e |@ e l . I . ‘ .

Load Condition Code Register from Stack. {See Special Operations)
Set when interrupt occurs. |f previously set, a Non-Maskable interrupt is required to exit
the wait state,

Main Program

T (AN
2 (Bit 1)
PC
n
n+1
iINDXD

6E = JMP
K = Offset
0 EXTND

X+K | Next Instruction

BMI N=1;
BPL N=0;
BvC : Vv=0;
BVS : V=1,
BHI : C+2Z=
BLS : C+Z=
BLE
BGT

{a) Jump

PC

n
n+1

n+2

Main Program Main Program

7E = JMP n| 20=8RA
Ky = Next Address n+t | K* = Offset
K = Next Address H

H

0
: {n+2) + K | Next Instruction

K [Next Instruction

*K = Signed 7-bit value

{b) Branch

Figure 27 Program Flow for JUMP/BRANCH Instructions

BEQ
BNE

z

z
BCC : C=
BCS : C=
BLT : N
BGE : N

Z+IN@®WVI=1;
Z+IN@PWVI=0;

Figure 28 Conditional Branch Instructions

G HITACHI

The conditional branch instructions, Fig. 28, consists of
seven pairs of complementary instructions. They are used to
test the results of the preceding operation and either continue
with the next instruction in sequence (test fails) or cause a
branch to another point in the program (test succeeds).

Four of the pairs are used for simple tests of status bits N,
Z,V,and C:

1. Branch on Minus (BMI) and Branch On Plus (BPL) tests the
sign bit, N, to determine if the previous result was negative or
positive, respectively.

2. Branch On Equal (BEQ) and Branch On Not Equal {BNE)
are used to test the zero status bit, Z, to determine whether
or not the result of the previous operation was equal to “0”.
These two instructions are useful following a Compare (CMP)
instruction to test for equality between an accumulator and
the operand. They are also used following the Bit Test (BIT)
to determine whether or not the same bit positions are set in
an accumulator and the operand.

215



HD6800,HD68A00,HD68BOO

3. Branch On Overflow Clear (BVC) and Branch On Overflow
Set (BVS) tests the state of the V bit to determine if the
previous operation caused an arithmetic overflow.

4. Branch On Carry Clear (BCC) and Branch On Carry Set
(BCS) tests the state of the C bit to determine if the previous
operation caused a carry to occur. BCC and BCS are useful
for testing relative magnitude when the values being tested
are regarded as unsigned binary numbers, that is, the values
are in the range “00” (lowest) of “FF” (highest). BCC
following a comparison (CMP) will cause a branch if the
(unsigned) value in the accumulator is higher than or the
same as the value of the operand. Conversely, BCS will cause
a branch if the accumulator value is lower than the operand.
The Fifth complementary pair, Branch On Higher (BHI)

and Branch On Lower or Same (BLS) are in a sense comple-
ments to BCC and BCS. BHI tests for both C and Z = “07, if
used following a CMP, it will cause a branch if the value in the
accumulator is higher than the operand. Conversely, BLS will
cause a branch if the unsigned binary value in the accumulator
is lower than or the same as the operand.

The remaining two pairs are useful in testing results of opera-
tions in which the values are regarded as signed two’s comple-
ment numbers. This differs from the unsigned binary case in the
following sense: In unsigned, the orientation is higher or lower;
in signed two’s complement, the comparison is between larger
or smaller where the range of values is between —-128 and +127.

Branch On Less Than Zero (BLT) and Branch On Greater
Than Or Equal Zero (BGE) test the status bits for NOV = “1”
and N@® V = “0”, respectively. BLT will always cause a branch
following an operation in which two negative numbers were
added. In addition, it will cause a branch following a CMP in
which the value in the accumulator was negative and the oper-
and was positive. BLT will never cause a branch following a
CMP in which the accumulator value was positive and the
operand negative. BGE, the complement to BLT, will cause a
branch following operations in which two positive values
were added or in which the result was “0”,

The last pair, Branch On Less Than Or Equal Zero (BLE) and
Branch On Greater Than Zero (BGT) test the status bits for
ZON + V)=“1"and Z ®(N + V)= 0", respectively,
The action of BLE is identical to that for BLT except that a
branch will also occur if the result of the previous result was
“Q”. Conversely, BGT is similar to BGE except that no branch
will occur following a “G" result.

® CONDITION CODE REGISTER OPERATIONS

The Condition Code Register (CCR) is a 6-bit register within
the MPU that is useful in controlling program flow during sys-
tem operation. The bits are defined in Fig. 29.

The instructions shown in Table 7 are available to the user
for direct manipulation of the CCR. In addition, the MPU auto-
matically sets or clears the appropriate status bits as many of
the other instructions on the condition code register was in-
dicated as they were introduced,

Systems which require an interrupt window to be opened
under program control should use a CLI-NOP-SEl sequence
rather than CLI-SEI.

(w8 Tzfv]e]

H = Half-carry; set whenever a carry from b3 to b4 of the resuit is
generated by ADD, ABA, ADC; cleared if no b3 tohbd
carry; not affected by other instructions.

| = Interrupt Mask; set by hardware of software interrupt or SE|
instruction; cleared by CL1 instruction, {Normally not used
in arithmetic operations.) Restored to a "'0'’ as a result of an
BTl instruction if |M stored on the stacked is ' 0"

N = Negative; set if high order bit (b7) of result is set; cteared
otherwise,

2 = Zero;set if result = "“0*; cleared otherwise.

V = Overflow; set if there was arithmetic overflow as a result of
the operation; cleared otherwise,

C = Carry; set if there was a carry from the most significant bit
{b7} of the result; cleared otherwise.

Figure 29 Condition Code Register Bit Definition

& ADDRESSING MODES

The MPU operates on 8-bit binary numbers presented to it
via the Data Bus. A given number (byte) may represent either
data or an instruction to be executed. depending on where it is
encountered in the control program. The HD6800 MPU has
72 unique instructions, however, it recognizes and takes action
on 197 of the 256 possibilities that can occur using an 8-bit
word length. This larger number of instructions results from the
fact that many of the executive instructions hiave more than
one addressing mode.

Table 7 Condition Code Register Instructions

Addressing Cond. Code Reg.
Mode — -
Operations Mnemonic IMPLIED Boolean Operation 5 f4~; 2[ t]o
op | ~[ # Hl 1 in|jzivic
Clear Carry CLC oc | 2|1 0~ C e e e |  ei e |R
Clear Interrupt Mask CLt OE 21 o | e | R| o | & oi e
Clear Overflow cLv 0A 2 1 0—-V . . . * ' R | e
Set Carry SEC oD | 2 1 1—+C e | ol o | | S
Set Interrupt Mask SEI OF | 2| ¢ 1 - e | S| e | e ‘ [y ‘ .
Set Overflow SEV [+]:] 2 1 1~V . . . e | S| e
Acmlitr A — CCR TAP 06 2|1 A - CCR 0]
CCR —~ Acmltr A TPA 07 | 2| 1 CCR— A s o] e ajeje
R = Reget
S = Set

o = Not affected
@ (ALL) Set according to the contents of Accumulator A,

216 GO HITACHI



These addressing modes refer to the manner in which the
program causes the MPU to obtain its instructions and data.
The programmer must have a method for addressing the MPU’s
internal registers and all of the external memory locations.

Selection of the desired addressing mode is made by the user
as the source statements are written, Translation into appropri-
ate opcode then depends on the method used. If manual trans-
lation is used, the addressing mode is implied in the opcode.
For example, the Immediate, Direct, Indexed, and Extended
modes may all be used with the ADD instruction. The proper
mode is determined by selecting (hexidecimal notation) 8B,
9B, AB, or BB, respectively.

The source statement format includes adequate information
for the selection if an assembler program is used to generate the
opcode. For instance, the Immediate mode is selected by the

Dirsct: n OO0 Instruction
Example: SUBB Z n+1 Z = Operand Address
Addr, Renge = 0~255
n+2 Next tnstr,
»
.
.
.
(K = One-Byte Operand} z [ K = Qperand
OR
(K = Two-Byte Operand} 2 K = Operand
Z+1 K = Operand

A If 2 < 255, Assembler Select Direct Mode
1§ Z > 255, Extended Mode is selected

Extended: n F£0 Instruction
Example: CMPA Z n+1 2w = Operand Address
Addr. Range: n+2 Z\_ = Operand Address
/N 266~65635
n+3 Next Instr.
.
L ]
L]
.
(K. = One-Byte Operand) z K = Operand
OR
b
(K = Two-Byte Operand} 4 Kp = Operand
Z+1 K = Operand

HD6800,HD68A00,HD68BOO

Assembler whenever it encounters the *“#7 symbol in the
operand field. Similarly, an “X” in the operand field causes the
Indexed mode to be selected. Only the Relative mode applies
to the branch instructions, therefore, ‘the mnemonic instruc-
tion itself is enough for the Assembler to determine addressing
mode,

For the instructions that use both Direct and Extended
modes, the Assembler selects the Direct mode if the operand
value is in the range 0~255 and Extended otherwise. There are
a number of instructions for which the Extended mode is
valid but the Direct is not. For these instructions, the Assembler
automatically selects the Extended mode even if the operand is
in the 0~255 range. The addressing modes are summarized in
Fig. 30.

Immediate: n Instruction
Example; LDAA #K n+1 K = Operand
(K = One-Byte Operand)
n+2 Next Inst,
OR
{K = Two-Byte Operand) n Instruction
{CPX, LDX and LDS)
n+t Ky = Cperand
n+2 K = Operand
n+3 Next Instr.
Relative: n Instruction
Example: BNE K n+1 +K = Branch Offset
(K = Signed 7-Bit Value) 42 Next Instr.é
Addr. Range: .

-125 to +129

H *
Relative to n.

2
Next Instr.A J

& If Branch Test False, A If Branch Test True.

(n+2) K

Indexed: n Instruction
Example: ADDA Z, X n+1 Z = Offset
Addr. Range: n+2 Next Instr.
0~255 Relative t0
Index Register, X .

.

.

(Z = 8-Bit Unsigned Value) X+Z K = Operand J

Figure 30 Addressing Mode Summary

G HITACHI 217



HD6800,HD68A00,HD68BOO

¢ implied (Includes ’Accumulator Addressing’”” Mode}

The successive fields in a statement are normally separated
by one or more spaces. An exception to this rule occurs for in-
structions that use dual addressing in the operand field and for
instructions that must distinguish between the two accumu-
lators. In these cases, A and B are “operands” but the space
between them and the operator may be omitted. This is com-
monly done, resulting in apparent four character mnemonics
for those instructions.

The addition instruction, ADD., provides an example of dual
addressing in the operand fields;

Comment

ADD CONTENTS OF MEM12 TO ACCA
ADD CONTENTS OF MEM12 TO ACCB

Operator Operand

ADDA MEM12
or ADDB MEM12

The example used earlier for the test instruction, TST, also
applies to the accumulators and uses the “accumulator address-
ing mode” to designate which of the two accumulators is being
tested:

Operator Comment
TSTB TEST CONTENTS OF ACCB
or TSTA TEST CONTENTS OF ACCA

A number of the instructions either alone or together with
an accumulator operand contain all of the address information
that is required, that is, “inherent” in the instruction, itself.
For instance, the instruction ABA causes the MPU to add the
contents of accumulators A and B together and place the result
in accumulator A. The instruction INCB, another example of
“accumulator addressing”, causes the contents of accumulator
B 1o be increased by one. Similarly, INX, increment the Index
Register, causes the contents of the Index Register to be in-
creased by one.

Program flow for instructions of this type is illustrated in
Figures 31 and 32. In these figures, the general case is shown
on the left and a specific example is shown on the right.
Numerical examples are in decimal notation. Instructions of this
type require only one byte of opcode. Cycle-by-cycle operation
of the implied mode is shown in Table 8.

MPU MPU

RAM RAM

-

/

-

/

Program Program
Memory Memory
PC | INSTR K PC = 5000 INX K

/-\v

General Flow

/'\

Example

Figure 31 Implied Addressing

MPU MPU
ACCB
— —
RAM RAM
/_\ \
- (=
r\J /\
Program Program
Memory Memory
PC [ INSTR K PC=5001 IncB K
"\ P~

General Flow Example

Figure 32 Accumulator Addressing

® |mmediate Addressing Mode
In the Immediate addressing mode, the operand is the value
that is to be operated on. For instance, the instruction

Operator Comment

LOAD 25 INTO ACCA

Operand
LDAA #25

causes the MPU to “immediately load accumulator A with the
value 25%; no further address reference is required. The Im-
mediate mode is selected by preceding the operand value with
the “#” symbol. Program flow for this addressing mode is
illustrated in Fig. 33,

The operand format allows either properly defined symbols
or numerical values. Except for the instructions CPX, LDX, and
LDS, the operand may be any value in the range 0 ~ 255, Since
Compare Index Register (CPX), Load Index Register (LDX),
Load Stack Pointer (LDS), require 16-bit values, the immediate
mode for these three instructions requie two-byte operands.

Table 9 shows the cycle-by-cycle operation for the im-
mediate addressing mode,

MPU MPU
ACCA
RAM RAM

T~

—
&=

-

N <

Program Program
Memory Memory
/\ T ~—
PC| iNSTR PC=5002] LDA A
DATA K 25 <

General Flow Example

Figure 33 Immediate Addressing Mode

218 @ HITACHI



Table 8 Implied Mode Cycle by Cycle Operation

Address Mode cle A
and ?nstsrsuctions Cycle Cvs Y.!iwne Address Bus ﬁ/r?g Bata Bus
ABA DAA SEC 1 1 Op Code Address 1 Op Code
ASL DEC  SEI 2
ASR INC SEV 2 1 Op Code Address + 1 1 Op Code of Next Instruction
CBA LSR TAB
cLC NEG TAP
cLl NOP  TBA
CLR ROL TPA
cLvV ROR TST
cOM  SBA
DES 1 1 Op Code Address 1 Op Code
DEX 4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
INS 3 o} Previous Register Contents 1 Irrelevant Data (NOTE 1)
INX 4 0 New Register Contents 1 Irrelevant Data (NOTE 1}
PSH 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 1 Stack Pointer 0 Accumulator Data
4 0 Stack Pointer — 1 1 Accumulator Data
PUL 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data INOTE 1)
4 1 Stack Pointer + 1 1 Operand Data from Stack
TSX 1 1 Op Code Address 1 Op Code
s 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data (NOTE 1)
4 0 New Index Register 1 Irrelevant Data (NOTE 1)
TXS 1 1 Qp Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 o} Index Register 1 Irrelevant Data
4 0 New Stack Pointer 1 Irrelevant Data
RTS 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Irrelevant Data {NOTE 2)
5 3 4] Stack Pointer 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer + 1 1 Address of Next Instruction (High Order Byte)
5 1 Stack Pointer + 2 1 Address of Next Instruction (Low Order Byte)
WAI 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 QOp Code of Next Instruction
3 1 Stack Pointer 0 Return Address (Low Order Byte)
4 1 Stack Pointer — 1 [¢] Return Address (High Order Byte)
9 5 1 Stack Pointer — 2 [¢] Index Register (Low Order Byte)
6 1 Stack Pointer — 3 [+] index Register (High Order Byte)
7 1 Stack Pointer — 4 [¢] Contents of Accumulator A
8 1 Stack Pointer — 5 1¢] Contents of Accumulator 8
9 1 Stack Painter — 6 {NOTE 3) 1 Contents of Cond. Code Register
RTI 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Irrelevant Data {NOTE 2}
3 0 Stack Pointer 1 Irrelevant Data (NOTE 1)
4 1 Stack Pointer + 1 1 Contents of Cond. Code Register from Stack
10 5 1 Stack Pointer + 2 1 Contents of Accumulater B from Stack
6 1 Stack Pointer + 3 1 Contents of Accumulator A from Stack
7 1 Stack Pointer + 4 1 Index Register from Stack (High Order Byte)
8 1 Stack Pointer + & 1 Index Register from Stack {Low Order Byte)
9 1 Stack Pointer + 6 1 Next Instruction Address from Stack
{High Order Byte)
10 1 Stack Pointer +7 1 Next [nstruction Address from Stack
(Low Order Byte)
SwWi 1 1 Op Code Address 1] Op Code
2 1 Op Code Address + 1 1 trrelevant Data {(NOTE 1)
3 1 Stack Pointer 0 Return Address (Low Order Byte}
4 1 Stack Pointer — 1 0 Return Address (High Order Byte}
5 1 Stack Pointer — 2 0 index Register {Low Order Byte)
12 8 3 Stack Pointer — 3 0 index Register {High Order Byte)
7 1 Stack Pointer — 4 ¢} Contents of Accumulator A
8 1 Stack Pointer — 5 0 Contents of Accumulator B
9 1 Stack Pointer — 6 0 Contents of Cond. Code Register
10 v Stack Pointer — 7 1 Irrelevant Data (NOTE 1)
11 1 Vector Address FFFA {Hex} 1 Address of Subroutine (High Orger Byte)
i2 1 Vector Address FFFB (Hex) 1 Address of Subroutine {Low Order Byte)
NOTE 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.

HD6800,HD6E8A00,HD68BO0

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

NOTE 2. Data is ignored by the MPU,

NOTE 3. While the MPU is waiting for the interrupt, Bus Available will go "“High" indicating the following states of the control lines: VMA is ’Low"; Address
Bus,R/W, and Data Bus are all in the high impedance state.

GO HITACHI 219



HD6800,HD68AO0,HD68BOO

Table 9 Immediate Mode Cycle by Cycle Operation

Address Mode Cycle | VMA R/W

and Instructions Cycte # Line Address Bus Line Data Bus
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address + 1 1 Operand Data
AND ORA 2
BIT SBC
CMmP suB
CcPX 1 1 Op Code Address 1 Op Code
LDS 3 2 1 Op Code Address + 1 1 Operand Data (High Order Byte)
LDX 3 1 Op Code Address + 2 1 Operand Data (Low QOrder Byte)

® Direct and Extended Addressing Modes

In the Direct and Extended modes of addressing, the operand
field of the source statement is the address of the value that is
to be operated on. The Direct and Extended modes differ only
in the range of memory locations to which they can direct the
MPU. Direct addressing generates a single 8-bit operand and,
hence, can address only memory locations 0 ~ 255; a two byte
operand is generated for Extended addressing, enabling the MPU
to reach the remaining memory locations, 256 ~ 65535. An
example of Direct addressing and its effect on program flow is
illustrated in Fig. 34,

Table 10 shows the cycle-by-cycle operations of this mode.

The MPU, after encountering the opcode for the instrution
LDAA (Direct) at memory location 5004 (Program Counter =
5004), looks in the next location, 5005, for the address of the
operand. It then sets the program counter equal to the value
found there (100 in the example) and fetches the operand, in

this case a value to be loaded into accumulator A, from that
location. For instructions requiring a two-byte operand such as
LDX (Load the Index Register), the operand bytes would be
retrieved from locations 100 and 101.

Extended addressing, Fig. 35, is similar except that a two-
byte address is obtained from locations 5007 and 5008 after the
LDAB (Extended) opcode shows up in location 5006. Extended
addressing can be thought of as the *‘standard™ addressing
mode, that is, it is a method of reaching anyplace in memory.
Direct addressing, since only one address byte is required,
provides a faster method of processing data and generates fewer
bytes of control code. In most applications, the direct address-
ing range, memory locations 0 ~ 255, are reserved for RAM.
They are used for data buffering and temporary storage of
system variables, the area in which faster addressing is of most
value, Cycle-by<cycle operation is shown in Table 11 for Ex-
tended Addressing.

Table 10 Direct Mode Cycle by Cycle Operation

Address Mode Cycle | VMA R/W
and Instructions Cycle # Line Address Bus Line Data Bus
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address + 1 1 Address of Operand
AND ORA 3 3 1 Address of Operand 1 Operand Data
BIT $BC
CMP  SUB
CPX 1 1 Op Code Address 1 Op Code
LDS a 2 1 Op Code Address + 1 1 Address of Operand
LDX 3 1 Address of Operand 1 Operand Data (High Order Byte)
4 1 Operand Address + 1 1 Operand Data (Low Order Byte}
STA 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Destination Address
3 0 Destination Address 1 Irrelevant Data (NOTE 1)
4 1 Destination Address V] Data from Accumulator
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Address of Operand
5 3 0 Address of Operand 1 Irrelevant Data {(NOTE 1)
4 1 Address of Operand 0 Register Data (High Order Byte)
5 1 Address of Operand + 1 0 Register Data (Low Order Byte)
NOTE 1. [f device which is addrass during this cycle uses VMA, then the Data Bus will go to the high impedance threestate condition,
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
220

O HITACHI



Table 11 Extended Mode Cycle by Cycle

HD6800,HD6BA00,HDE8BOO

Address Mode Cycle | VMA R/W
and Instructions Cycle i Line Address Bus Line Data Bus
STS 1 1 Op Code Address 1 Op Code
STX 2 1 . Op Code Address + 1 1 Addrass of Operand (High Order 8yte)
6 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
4 0 Address of Operand 1 frrelevant Data (NOTE 1)
5 1 Address of Operand 0 Operand Data (High Order Byte)
6 1 : Address of Operand + 1 0 Operand Data (Low Order Byte)
JSR 1 1 © Op Code Address 1 Op Code
o2 1 Op Code Address + 1 1 Address of Subroutine {High Order Byte)
3 1 Op Code Address + 2 1 © Address of Subroutine {Low Order Byte)
4 1 Subroutine Starting Address 1 Op Code of Next [nstruction
9 5 1 Stack Pointer I o Return Address (Low Order Byte)
6 1 ' Stack Pointer — 1 0 Return Address {High Order Byte)
! 7 0 ‘ Stack Pointer — 2 1 Irrelevant Data (NOTE 1)
: 8 0 Op Code Address + 2 1 Irrelevant Data (NOTE 1)
j l 9 1 | Op Code Address + 2 1 . Address of Subroutine {Low Order Byte)
JMP ) 1, 1 | OpCode Address | 1 | OpCode
i 3 2 | 1 | Op Code Address + 1 P ! Jump Address (High Order Byte)
i 3 1 ; Op Code Address + 2 P " Jump Address {Low Order Byte)
ADC EOR 1 1 | Op Code Address 1 Op Code
ADD LDA 2 1 . Op Code Address + 1 1 Address of Operand (High Order Byte)
AND ORA 4 3 01 ~ Op Code Address + 2 1 Address of Operand (Low Order Byte)
BIT SBC 4 i Address of Operand 1 Operand Data
CMP SuB ' 11
CPX 1 ! 1 | OpCode Address 1 Op Code
LDS 2 i 1 i Qp Code Address + 1 1 Address of Operand (High Order Byte)
LDX 5 3 | 1 | Op Code Address + 2 1 Address of Operand {Low Order Byte)
4 } 1 © Address of Operand 1 Operand Data (High Order Byte)
5 . 1 j Address of Operand + 1 1 Operand Data {Low Order Byte)
STA A 1 1 i Op Code Address o1 Op Code
STAB z 1 i Op Code Address + 1 i1 i Destination Address {High Order Byte)
5 1 3 1, OpCode Address + 2 1 . Destination Address (Low Order Byte;
4 0 : Operand Destination Address 1 i lrrelevant Data {NQTE 1)
5 1 | Operand Destination Address 0 | Data from Accumulator
ASLL LSR 1 1 | Op Code Address 1 Op Code
ASR NEG 2 1 Op Code Address + 1 1 Address of Operand {High Order Byte)
CLR ROL 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
COM ROR 6 4 1 “ Address of Operand 1 i Current Operand Data
DEC TST 5 0 I Address of Operand 1 ' Jrrelevant Data (NOTE 1)
INC 6 1/0 Address of Operand 6] New Operand Data (NOTE 2)
{NOTE
2)
NOTE 1. if device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
NOTE 2. For TST, VMA =0 and Operand data does not change.
MPU MPU MPU MPU
ACCA ACCB
q — —
RAM RAM RMA RAM
ADDR DATA Y ADDR = 100 35 K ADDR DATA <‘: ADDR = 300 45 <
1 /—\ \
Program Program Program Program
Memory Memory Memory Memory
PC ] INSTR -
rc [ INSTR PC-5004 [ LDAA PC=5006 | LDAB
5005 [ 100 ADDR 50071 300 o
PC-1 | ADDR = ADDR 5008 [
l,——\ 5009 \——\
ADDR = 0 £ 255 Example ADDR 2 256 Example

General Flow

Figure 35 Extended Addressing Mode

General Flow

Figure 34 Direct Addressing Mode

G HITACHI 221



HD6800,HD68A00,HDE8BBOO

@ Relative Address Mode

In both the Direct and Exiended modes, the address ob-
tained by the MPU is an absolute numerical address. The Re-
lative addressing mode, implemented for the MPU’s branch
instructions, specifies a memory location relative to the Program
Counter’s current location. Branch instructions generate two
bytes of machine code, one for the instruction opcode and one
for the “relative” address (see Fig. 36). Since it is desirable to be
able to branch in either direction, the 8-bit address byte is inter-
preted as a signed 7-bit value; the 8th bit of the operand is
treated as a sign bit, 0" = plus and *“1” = minus. The remaining
seven bits represent the numerical value. This result in a relative
addressing range of +127 with respect to the location of the
branch instruction itself. However, the branch range is com-
puted with respect to the next instruction that would be ex-
ecuted if the branch conditions are not satisfied. Since two
byte are generated, the next instruction is located at PC+2.
If, D is defined as the address of the branch destination, the
range is then;

(PC+2) -128 S DX (PC+2) + 127

or PC~126 <D <PC+129

MPU

RAM

/—\

/\

Program
Memory

—_

PC Instr.,
Offset

T T

(PC+2) | Next Instr,

/_\
/_\

Next Instr.

{PC+2) + (Offset)

/‘\

that is, the destination of the branch instruction must be
within -126 to +129 memory locations of the branch instruc-
tion itself. For transferring control beyond this range, the un-
conditional jump (JMP), jump to subroutine (JSR), and return
from subroutine (RTS) are used.

In Fig. 36, when the MPU encounters the opcode for BEQ
(Branch if result of last instruction was zero), it tests the Zero
bit in the Condition Code Register. If that bit is “0”, indicating
a non-zero result, the MPU continues execution with the next
instruction (in location 5010 in Fig. 36). If the previous result
was zero, the branch condition is satisfied and the MPU adds the
offset, 15 in this case, to PC+2 and branches to location 5025
for the next instruction.

The branch instructions allow the programmer to efficiently
direct the MPU to one point or another in the control program
depending on the outcome of test results. Since the control
program is normally in read-only memory and cannot be
changed. the relative address used in execution of branch in-
structions is a constant numerical value. Cycle-by-cycle opera-
tion is shown in Table 12 for relative addressing.

MPU

1

RAM

ik

N

Program
Memory

e

BEQ
15

Next Instr,

Q

Next |nstr.

PC 5008

i

PC 5010

PC 5025

/\

Figure 36 Relative Addressing Mode

222

GO HITACHI



HD6800,HD68BA00,HDE8BBOO

Table 12 Relative Mode Cycle-by-Cycle Operation
Address Mode Cycle | VMA W
and rstructions Cycle | “VE e Address Bus ﬁ’r“’: 'Dats Bus
BCC BHI BNE 1 1 Op Code Address 1 Op Code
BCS BLE BPL a 2 1 Op Code Address + 1 1 Branch Offset
BEQ BLS BRA 3 0 Op Code Address + 2 1 Irrelevant Data {NOQTE 1)
BGE BLT BVC 4 0 Branch Address 1 Irrelevant Data (NOTE 1)
BGT BMI BVS
BSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Branch Offset
3 o] Return Address of Main Program 1 jrretevant Data {NOTE 1)
8 4 1 Stack Pointer 0 Return Address (Low Order Byte)
5 1 Stack Pointer — 1 0 Return Address (High Order Byte)
(3} (3] Stack Pointer — 2 1 Irreievant Data {NQTE 1)
7 0 Return Address of Main Program 1 Irrelevant Data (NOTE 1}
8 0 Subroutine Address 1 irrelevant Data (NOTE 1)

NOTE 1. if device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

® |ndexed Addressing Mode

With Indexed addressing the numerical address is variable and
depend on the current contents of the Index Register. A source
statement such as

Comment
PUT A IN INDEXED LOCATION

Operator
STAA X

Operand

causes the MPU to store the contents of accumulator A in the
memory location specified by the contents of the Index Re-
gister (recall that the label X is reserved to designate the Index
Register). Since there are instructions for manipulating X
during program execution (LDX, INX, DEX, etc.), the Indexed
addressing mode provides a dynamic ‘“on the fly” way to
modify program activity.

MPU

—
(—

RAM

———

DATA

Program
Memory

PC INSTR
OFFSET

ADDR = INDX
+ OFFSET

ADDR = 405

PC = 5006

/\

OFFSET £ 255
Genera! Flow

The operand field can also contain a numerical value that will
be automatically added to X during execution. This format is
illustrated in Fig. 37.

When the MPU encounters the LDAB (Indexed) opcode in
location 5006, it looks in the next memory location for the
value to be added to X (5 in the example) and calculates the
required address by adding 5 to the present Index Register value
of 400. In the operand format, the offset may be represented
by a label or a numerical value in the range 0 ~ 255 as in the
example. In the earlier example, STAA X, the operand is
equivalent to 0, X , that is, the “0”" may be omitted when the
desired address is equal to X. Table 13 shows the cycle-by<ycle
operation for the Indexed Mode of Addressing.

MPU
ACCB

59
(Ca00
RAM

=

Program
Memory

[——

=

Exampie

Figure 37 Indexed Addressing Mode

G HITACHI 223



HD6800,HD68AQ0,HD68B00

Table 13 Indexed Mode Cycie by Cycle

Address Mode Cycle | VMA R/W
and Instructions Cycle v# Line Address Bus Li/ne Data Bus
JMP 1 1 Cp Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
4 3 0 Index Register 1 Irrelevant Data (NOTE 1)
4 o] Index Register Plus Offset {w/o Carry) 1 Irrelevant Data (NOTE 1)
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA . 2 1 Op Code Address + 1 1 Offset
AND ORA 5 3 0 Index Register 1 Irrelevant Data (NOTE 1)
BIT sac 4 0 index Register Plus Offset {w/o Carry) 1 . lrrelevant Data {NOTE 1}
CMP  SUB 5 1 index Register Pius Offset ‘ 1 | Operand Data
CcPX 1 1 Op Code Address i 1 | OpCode
L.DS 2 1 Op Code Address + 1 1 Offset
LDX 3 0 Index Register 1 i Irrelevant Data (NOTE 1)
6 4 0 index Register Plus Offset {w/o Carry)} 1 | Irrelevant Data (NOTE 1)
5 1 index Register Plus Offset 1 | Operand Data (High Order Byte}
| 6 1 Index Register Plus Offset + 1 ;1 I Operand Data (Low Order Byte)
STA 1 ] Op Code Address T | Op Code
2 1 Op Code Address + 1 1 | Offset
6 3 0 Index Register 1 ' Irrelevant Data (NOTE 1)
4 0 Index Register Plus Offset (w/o Carry) 1 i lrrelevant Data (NOTE 1}
5 0 Index Register Plus Offset 1 \reelevant Data (NOTE 1)
[ 1 Index Register Plus Offset 0 Qperand Data
ASL LSR 1 1 Op Code Address 1 Op Code
ASR NEG 2 1 Op Code Address + 1 1 Offset
CLR ROL 3 0 Index Register 1 Irrelevant Data (NOTE 1}
COM ROR 7 4 0 Index Register Plus Offset {w/o Carry) 1 lrrefevant Data (NOTE 1)
DEC TST 5 1 Index Register Plus Offset 1 Current Operand Data
INC 6 0 tndex Register Plus Offset 1 Irrelevant Data (NQTE 1)
7 1/0 Index Register Plus Offset 0 New Operand Data (NOTE 2}
(NOTE
2)
sTS 1 1 Op Code Address Lo Op Code
STX 2 1 Op Code Address + 1 1 | Offset
3 4] Index Register 1 i Irrelevant Data (NOTE 1)
7 4 0 Index Register Plus Offset {w/o Carry} 1 Irrelevant Data (NOTE 1)
5 0 Index Register Plus Offset 1 Irrelevant Data (NOTE 1)
6 1 Index Register Plus Offset 0 Operand Data {High Order Byte)
7 1 Index Register Plus Offset + 1 0 Operand Data {Low Oder Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
3 0 Index Register 1 Irrelevant Data {(NOTE 1)
4 1 Stack Pointer 0 Return Address {Low Order Byte}
8 5 1 Stack Pointer — 1 0 Return Address {High Order Byte}
6 0 Stack Pointer — 2 1 Irrelevant Data (NOTE 1}
7 0 index Register 1 Irrelevant Data {NOTE 1)
8 0 Index Register Ptus Offset (w/o Carry) 1 Irrelevant Data {NOTE 1)
NOTE 1. If Device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition. -
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
NOTE 2. For TST, VMA = 0 and Operand data does not change.
224

G HITACHI



HD6800,HD68A00,HD68BO0O

..... $4|?11!.l.l--ll--;- Ti-
J | -
\\\\\ __1-- xe__4d__} e e e e
A I A N 1 me
> i S (U O I
e T D Y DI - ]z
N Ns .
Y o T S I . \J::T D S S I -3 S
vAA
™ a1 N R
.................... [ i AT
e LJ
b BE - L e I . B
L . . | = rnn
- - 2E 1 --t-

|

|

I
Offset

X
) &
X

|
|
4
|
11
|
|
|
l
f
|
I
+
L)
[
1
!
|
1
|
) G
STA
|
l
T
|
.
1
i

o L

X
Data
Next

STA Address Address

Data

Data
|
;
{
)
|
{
b
|
|
|
|

'
i
1
L
[
1
|
|
!
I
]
1
!
-
!

X
X

NC

I
L
I
|
)

)
PSH
i
|
I
I
I

|
|
1
-
!
"
I
1

Next
Inst.
|
i
|
T
|
Data
|
|

X
STA Address
X
X XXX

X
s
|
|
}
1
i
X
X
A
A

T
|
|
T
I
t+
|
|
|
}
1
1
)

LDA Address Address

X
LDA Data
X
LDA Address
X
LDA Offset
ABA
|
|
|
i
!
X
Branch PCt

————————————

RN/
—_xX

L Data Bus

R/W_/

RW _/
Data Bus :X X X D¢
RW -/

VMA

VMA
vMA
VMA

Data Bus x
:./
Data Bus _X X
vMa _ S
RN/
Data Busj ~ X

INDEXED
Data Bus
P
N
pd
~
-~

Address Bus y

IMMEDIATE
DIRECT
EXTENDED
IMPLIED
RELATIVE

225

Inst.
G HITACHI

Figure 38 Example of Excution Timing in Each Addressing Mode

Offset

Inst.



