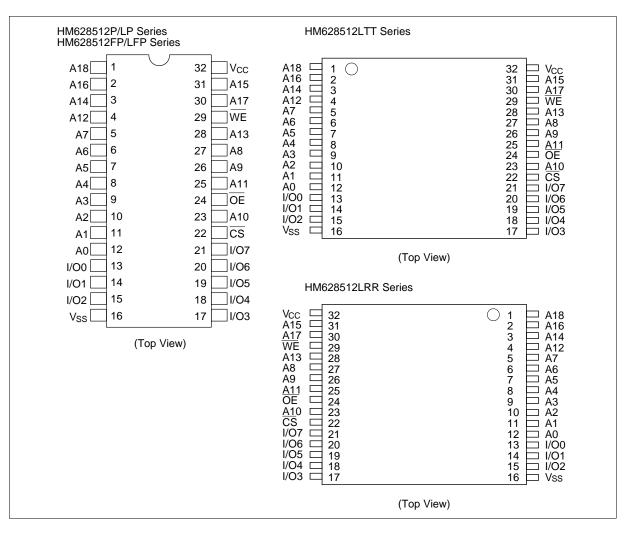
524288-word \times 8-bit High Speed CMOS Static RAM

HITACHI

ADE-203-236F (Z) Rev. 6.0 Jun. 9, 1995

Description

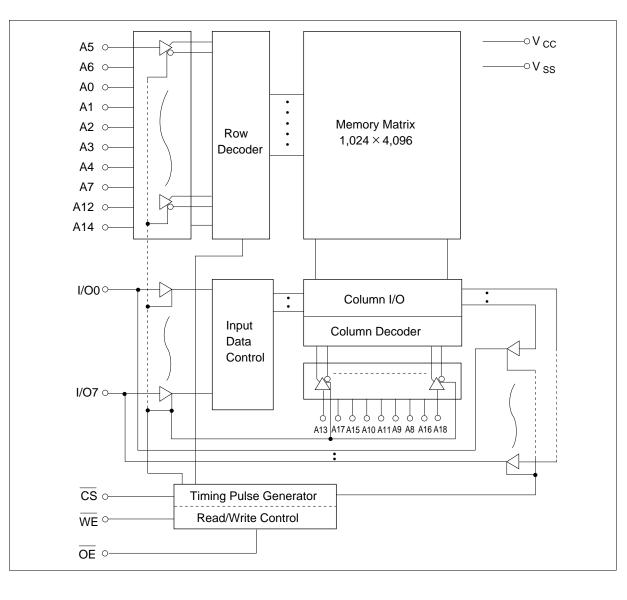
The Hitachi HM628512 is a 4-Mbit static RAM organized 512-kword \times 8-bit. It realizes igher density, higher performance and low power consumption by employing 0.5 μ m Hi-CMOS process technology. The device, packaged in a 525-mil SOP (foot print pitch width) or 400-mil TSOP TYPE II or 600-mil plastic DIP, is available for high density mounting. LP-version is suitable for battery backup system.


Features

- High speed: Fast access time:
- Low power
 - Standby: 10 µW (typ) (L/L-SL version)
 - Operation: 75 mW (typ) (f = 1 MHz)
- Single 5 V supply
- Completely static memory
 No clock or timing strobe required
- Equal access and cycle times
- Common data input and output: Three state output
- Directly TTL compatible: All inputs and outputs
- Capability of battery backup operation (L/L-SL version)

Ordering Information

Type No.	Access Time	Package
HM628512P-5	55 ns	600-mil 32-pin plastic DIP (DP-32)
HM628512P-7	70 ns	
HM628512LP-5	55 ns	
HM628512LP-7A	65 ns	
HM628512LP-7	70 ns	
HM628512LP-5SL	55 ns	
HM628512LP-7SL	70 ns	
HM628512FP-5	55 ns	525-mil 32-pin plastic SOP (FP-32D)
HM628512FP-7	70 ns	
HM628512LFP-5	55 ns	_
HM628512LFP-7A	65 ns	
HM628512LFP-7	70 ns	
HM628512LFP-5SL	55 ns	_
HM628512LFP-7SL	70 ns	
HM628512LTT-5	55 ns	400-mil 32-pin plastic TSOP II (TTP-32D)
HM628512LTT-7A	65 ns	
HM628512LTT-7	70 ns	
HM628512LTT-5SL	55 ns	_
HM628512LTT-7SL	70 ns	
HM628512LRR-5	55 ns	400-mil 32-pin plastic TSOP II reverse (TTP-32DR)
HM628512LRR-7A	65 ns	
HM628512LRR-7	70 ns	
HM628512LRR-5SL	55 ns	_
HM628512LRR-7SL	70 ns	


Pin Arrangement

Pin Description

Pin name	Function				
A0 – A18	Address				
I/O0 – I/O7	Input/output				
CS	Chip select				
ŌĒ	Output enable				
WE	Write enable				
V _{cc}	Power supply				
V _{ss}	Ground				

Block Diagram

Function Table

WE	CS	ŌĒ	Mode	V _{cc} Current	Dout Pin	Ref. Cycle
Х	Н	Х	Not selected	I_{SB},I_{SB1}	High-Z	_
Н	L	Н	Output disable	I _{cc}	High-Z	_
Н	L	L	Read	I _{cc}	Dout	Read cycle
L	L	Н	Write	I _{cc}	Din	Write cycle (1)
L	L	L	Write	I _{cc}	Din	Write cycle (2)

Note: X: H or L

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage on any pin relative to V_{ss}	V _T	-0.5 ^{*2} to +7.0	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	-10 to +85	°C

Notes: 1. Relative to V_{SS} .

2. -3.0 V for pulse half-width ≤ 30 ns

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C)

Parameter	Symbol	Min	Тур	Мах	Unit
Supply voltage	V _{cc}	4.5	5.0	5.5	V
	V _{ss}	0	0	0	V
Input high (logic 1) voltage	V _{IH}	2.2	—	6.0	V
Input low (logic 0) voltage	V _{IL}	-0.3*1	_	0.8	V

Note: 1. -3.0 V for pulse half-width ≤ 30 ns

DC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Min	Typ⁺¹	Мах	Unit	Test Conditions	
Input leakage current		I _{LI}	_	_	1	μΑ	Vin = V_{ss} to V_{cc}
Output leakage current	I _{LO}	—	_	1	μA	$\overline{\frac{CS}{WE}} = V_{H} \text{ or } \overline{OE} = V_{H} \text{ or}$ $\overline{WE} = V_{L}, V_{VO} = V_{SS} \text{ to } V_{CC}$	
Operating power supply current: DC		I _{CC READ}	_	15	25	mA	$\overline{CS} = V_{IL}, \overline{WE} = V_{IH}$ others = $V_{IH}/V_{IL}, I_{I/O} = 0 \text{ mA}$
		I _{CC WRITE}	—	20	45	mA	$\label{eq:constraint} \begin{split} \overline{CS} &= V_{_{IL}}, \ \overline{WE} = V_{_{IL}} \\ \text{others} &= V_{_{IH}} / V_{_{IL}}, \ I_{_{I/O}} = 0 \ \text{mA} \end{split}$
Operating power supply current	-5/7A	I _{CC1}		70	100	mA	Min cycle, duty = 100%
	-7	I _{CC1}	_	60	90	mA	$\overline{CS} = V_{IL}$, others = V_{IH}/V_{IL} $I_{IVO} = 0 \text{ mA}$
Operating power supply current		I _{CC2}	_	15	30	mA	$\begin{array}{l} Cycle \ time = 1 \ \mu s, \\ duty = 100\% \\ I_{I/O} = 0 \ mA, \ \overline{CS} \leq 0.2 \ V \\ V_{IH} \geq V_{CC} - 0.2 \ V, \ V_{IL} \leq 0.2 \\ V \end{array}$
Standby power supply current: DC		I _{SB}		1	3	mA	$\overline{\text{CS}} = \text{V}_{\text{IH}}$
Standby power supply current (1): DC	;	I _{SB1}	—	0.02	2	mA	Vin \geq 0 V, $\overline{\text{CS}} \geq$ V $_{\text{CC}}$ – 0.2 V
			—	2	100 ^{*2}	μA	
			—	2	50 ^{*3}	μΑ	
Output low voltage	V _{ol}		_	0.4	V	I _{oL} = 2.1 mA	
Output high voltage		$V_{\rm OH}$	2.4			V	I _{OH} = -1.0 mA

Notes: 1. Typical values are at V_{cc} = 5.0 V, Ta = +25°C and specified loading, and not guaranteed.

2. This characteristics is guaranteed only for L version.

3. This characteristics is guaranteed only for L-SL version.

Capacitance (Ta = 25° C, f = 1 MHz)

Parameter	Symbol	Тур	Max	Unit	Test Conditions
Input capacitance ^{*1}	Cin	—	8	pF	Vin = 0 V
Input/output capacitance ^{*1}	C _{I/O}	_	10	pF	$V_{I/O} = 0 V$

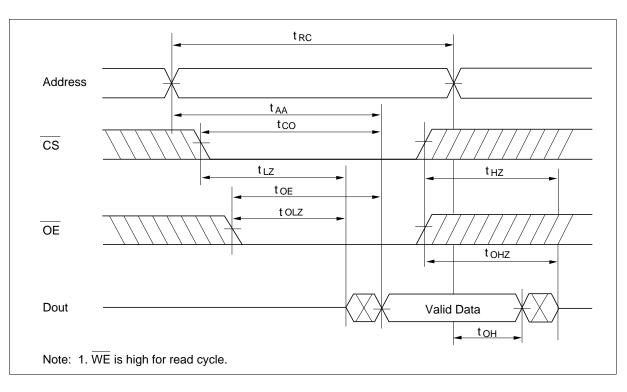
Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 V \pm 10\%$, unless otherwise noted.)

Test Conditions

- Input pulse levels: 0.8 V to 2.4 V
- Input rise and fall time: 5 ns
- Input and output timing reference levels: 1.5 V
- Output load: 1 TTL Gate + C_L (100 pF) (HM628512-7A/7)
 - 1 TTL Gate + C_L (50 pF) (HM628512-5)

(Including scope & jig)

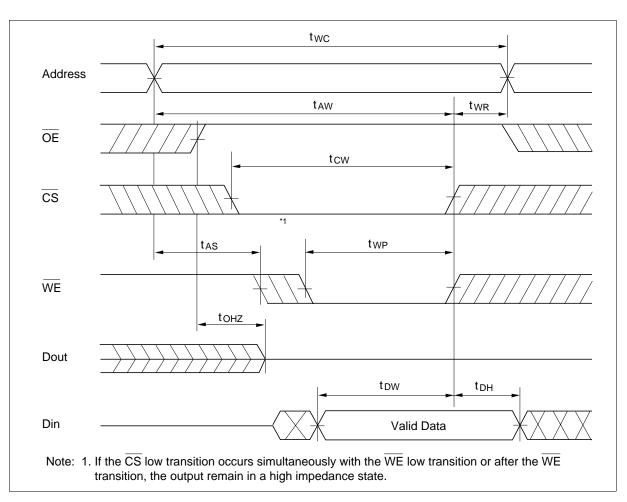

Read Cycle

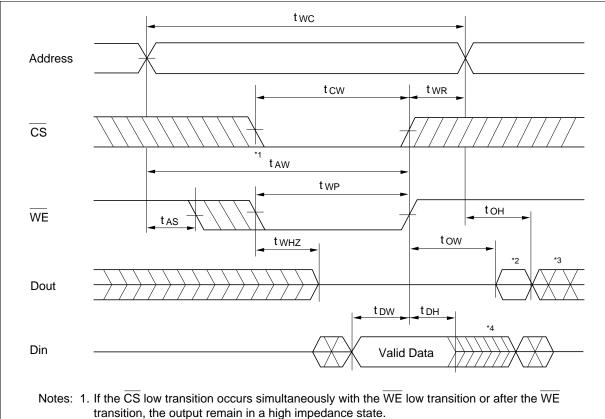
			HM628512						
		-5		-7A		-7		-	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	55	_	65	_	70	_	ns	
Address access time	t _{AA}		55		60		70	ns	
Chip select access time	t _{co}	—	55	—	65		70	ns	
Output enable to output valid	t _{oe}	—	25	—	30		35	ns	
Chip selection to output in low-Z	t _{LZ}	10	—	10	—	10	_	ns	2
Output enable to output in low-Z	t _{olz}	5	—	5	—	5	_	ns	2
Chip deselection to output in high-Z	t _{HZ}	0	20	0	20	0	25	ns	1, 2
Output disable to output in high-Z	t _{OHZ}	0	20	0	20	0	25	ns	1, 2
Output hold from address change	t _{oh}	10	—	10	—	10	_	ns	

Notes: 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

2. This parameter is sampled and not 100% tested.

Read Timing Waveform^{*1}


Write Cycle


		HM628512							
		-5		-7A		-7		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{wc}	55	_	55	_	70	_	ns	
Chip selection to end of write	t _{cw}	50	_	50	_	60	_	ns	2
Address setup time	t _{AS}	0	_	0	_	0	—	ns	3
Address valid to end of write	t _{AW}	50	_	50	_	60	_	ns	
Write pulse width	t _{wP}	40	_	40	_	50	_	ns	1, 8
Write recovery time	t _{wR}	5	_	5	_	5	_	ns	4
WE to output in high-Z	t _{wHZ}	0	20	0	20	0	25	ns	5, 6, 7
Data to write time overlap	t _{DW}	25	_	25	_	30	_	ns	
Data hold from write time	t _{DH}	0	_	0	_	0		ns	
Output active from output in high-Z	t _{ow}	5	_	5	_	5	_	ns	6
Output disable to output in high-Z	t _{oHZ}	0	20	0	20	0	25	ns	5, 6

Notes: 1. A write occurs during the overlap (t_{WP}) of a low \overline{CS} and a low \overline{WE} . A write begins at the later transition of \overline{CS} going low or \overline{WE} going low. A write ends at the earlier transition of \overline{CS} going high or \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write.

- 2. t_{cw} is measured from \overline{CS} going low to the end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the earlier of \overline{WE} or \overline{CS} going high to the end of write cycle.
- 5. During this period, I/O pins are in the output state so that the input signals of the opposite phase to the outputs must not be applied.
- 6. This parameter is sampled and not 100% tested.
- t_{WHZ} is defined as the time at which the outputs acheive the open circuit conditons and is not referred to output voltage levels.
- In the write cycle with OE low fixed, t_{WP} must satisfy the following equation to avoid a problem of data bus contention. t_{WP} ≥ t_{DW} min + t_{WHZ} max

Write Timing Waveform (1) (OE Clock)

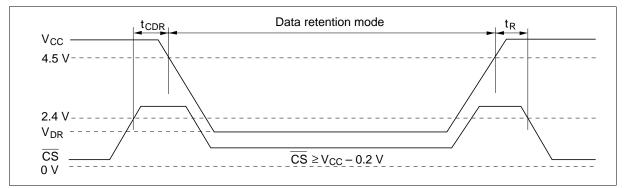
Write Timing Waveform (2) (\overline{OE} Low Fixed)

- 2. Dout is the same phase of the write data of this write cycle.
- 3. Dout is the read data of next address.
- 4. If \overline{CS} is low during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the outputs must not be applied to them.

Low V_{cc} Data Retention Characteristics (Ta = 0 to +70°C)

This characteristics is guaranteed only for L/L-SL version.

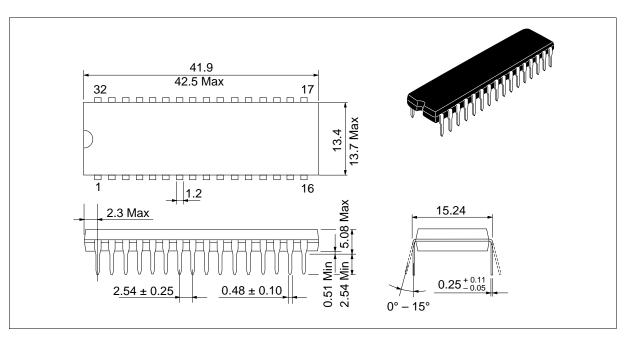
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions ^{*3}
V_{cc} for data retention	V_{DR}	2		—	V	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V}, \text{ Vin} \ge 0 \text{ V}$
Data retention current	I _{CCDR}		1 ^{*4}	50 ^{*1}	μΑ	V_{cc} = 3.0 V, Vin \ge 0 V
		_	1 ^{*4}	15 ^{*2}	μΑ	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V}$
Chip deselect to data retention time	t _{cdr}	0		—	ns	See retention waveform
Operation recovery time	t _R	5		—	ms	_


Notes: 1. For L-version and 20 μ A (max.) at Ta = 0 to 40°C.

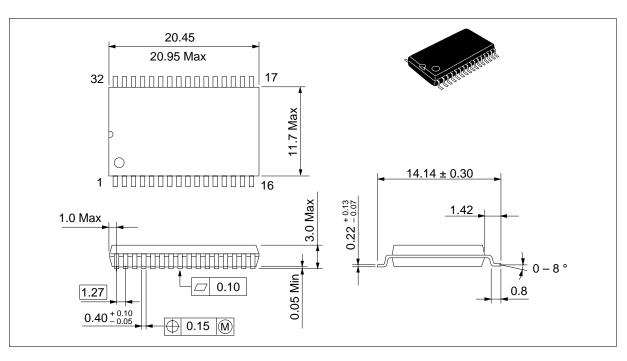
2. For SL-version and 3 μ A (max.) at Ta = 0 to 40°C.

3. CS controls address buffer, WE buffer, OE buffer, and Din buffer. In data retention mode, Vin levels (address, WE, OE, I/O) can be in the high impedance state.

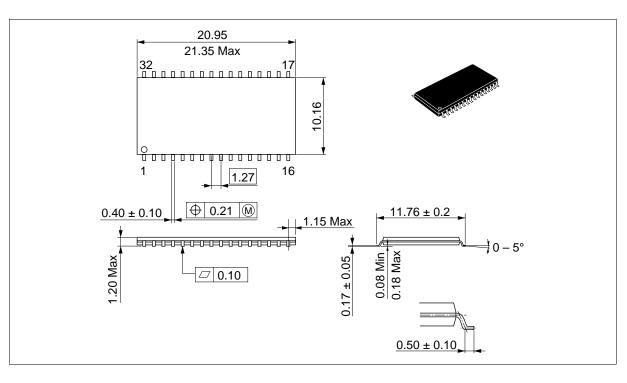
4. Typical values are at V_{cc} = 3.0 V, Ta = 25°C and specified loading, and not guaranteed.


Low V_{CC} Data Retention Timing Waveform (\overline{CS} Controlled)

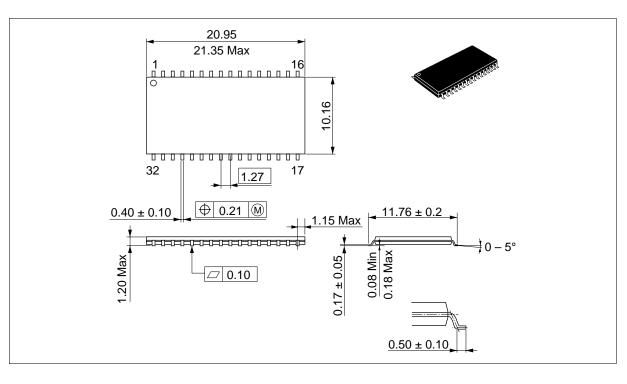
Package Dimensions


HM62851P/LP Series (DP-32)

Unit: mm


HM628512FP/LFP Series (FP-32D)

Unit: mm


HM628512LTT Series (TTP-32D)

Unit: mm

HM628512LRR Series (TTP-32DR)

Unit: mm

